ASX Release April 26, 2023

Magnum Mining and Exploration Limited ABN 70 003 170 376

ASX Code MGU

Chief Executive Officer Neil Goodman

Non-Executive Chairman Anoosh Manzoori

Non-Executive Directors Athan Lekkas Matt Latimore

Company Secretary John Dinan

Issued Shares 704,878,469

Listed Options 136,428,585 Unlisted Securities (Options & Performance Rights) 133,000,000

Convertible Notes (Options & Performance Rights) 206

Email info@mmel.com.au

Website www.mmel.com.au

Level 8 90 Collins Street Melbourne, 3000

T+61 8 62800245

Quarterly Activities Report for the three Month Period ending 31 March, 2023.

HIGHLIGHTS

Buena Vista

- Additional exploration targets of 407-540m tonnes of iron ore defined via modelling of aeromagnetic data
- Lithium discovered in regional stream samples
- Beneficiation test work confirms 68% Fe high grade product

Pig Iron and Biochar

Biochar agreement signed with Renex

Corporate

•

- Listing on the US share exchange OTC-QB completed
- Purchase of Appalachian Iron project approved by shareholders

Magnum Mining & Exploration Limited (ASX: MGU) (Magnum or the Company) is pleased to provide a summary of its activities on the Buena Vista Magnetite Project in Nevada, USA.

BUENA VISTA MAGNETITE PROJECT

The Company's flagship asset is the Buna Vista Magnetite Project in Nevada, USA (Figure 1). The project has a JORC (2012) compliant Resource that the Board of Magnum is actively progressing to mine and downstream processing development using novel technology. The Company is focusing on becoming a supplier of choice of green pig iron to the North American electric arc furnace market.

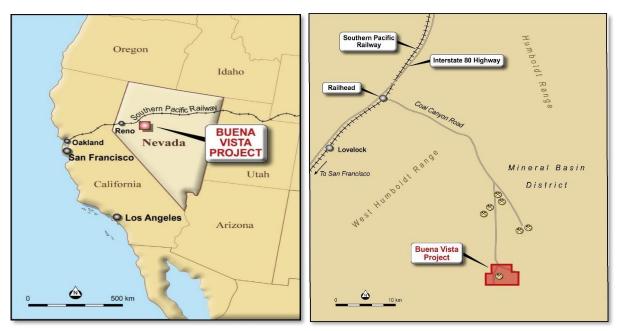


Figure 1: The Buena Vista Magnetite Project is located in central western Nevada close to infrastructure and in a mining friendly jurisdiction

Significant Exploration Target Defined

The Buena Vista Green Pig Iron Project was covered by a high definition, helicopter-borne aeromagnetic survey, as announced in November 2022. This data was used to model the causative magnetic bodies that could give rise to the observed magnetic anomalies by dividing the earth into voxels. The voxels are assigned magnetic susceptibilities in an iterative manner until the theoretical magnetic anomalies caused by those susceptibilities match the observed ones.

The result of this analysis shows a potential Exploration Target Estimate of 407 to 540 million tonnes at 15% to 22% iron (Fe), exclusive of the existing Indicated and Inferred Resources of 232Mt @ 18.6% Fe (JORC 2012), announced on 23 March 2021. The potential quantity and grade of the Exploration Target Estimate is conceptual in nature, there has been insufficient exploration to estimate a Mineral Resource over the entire area of the Exploration Target, and it is uncertain if further exploration will result in the estimation of an increased Mineral Resource.

Lithium Discovered at Buena Vista

During an Executive visit to the site in November 2022, a limited scope stream sediment survey was undertaken over a wide area of the claims Magnum holds. The samples were collected as a first pass assessment to assist in planning a comprehensive multi-commodity testing of the ground. Interpretation of the recently completed high resolution aeromagnetic survey is identifying non-iron targets that may be prospective for precious, rare earth, and base metals. While that interpretation is ongoing the recent site visit afforded an opportunity for early sampling. It has been noted that past workers have not undertook exploration for commodities other than iron ore in the area. This is in spite of gold and silver, (eg, Coeur Rochester Mine) occurring on the same mountain belt as Buena Vista and within 40 km of the property. Assays for stream sediment samples were performed by ALS Laboratories and showed lithium levels of 74.3ppm and 41.1 ppm of Li. These are well above the background lithium 13.1 to 24.9 ppm Li which is taken as the local background value. Both samples are closely associated with major north-west trending faults that bisect the Buena Vista magnetite deposit. The deposit is intruded by a number of dykes and it is speculated that pegmatite dykes also occur in the area. Pegmatite dykes are the dominant source of lithium in Australia but far less common in the USA. Rhyolites are a more common source of lithium in the western USA. Buena Vista occurs within a volcanic package that includes this lithology, though none has been mapped in the mine area. However, this style will also be explored for.

Test Work Confirms +68% Fe High Grade Iron Ore

In February 2023, Magnum completed metallurgical test work on ore from its Buena Vista Green Pig Iron Project mine site in Nevada, USA. Two ore types were tested: medium grade and low grade ores. Grind size recovery tests showed that medium grade ores could deliver a 68.4% Fe product with a 48% weight recovery at an industry standard 45µm grind size. Low grade ores had a weight recovery of 20%. Crucially, the study concluded that the current beneficiation plant design needs very little change from that proposed in the 2011 Feasibility Study. Considerable costs will be saved by not repeating past design work. In addition to the recovery test work, ore hardness, through the Crushing Work and Bond Work Indices, were measured. This shows that the CWI is about a third of that measured from Banded Iron Formation sourced magnetite for medium grades and about half for low grade Buena Vista ores. This relates directly to how much power is required to crush and grind the ore, making the Buena Vista ore highly competitive compared to BIF related ores. The test work was designed to check the work done for the project's 2011 Feasibility Study (ASX: RHM 9 May, 2011) to inform the Company's in progress Scoping Study. Specialist metallurgical consultants Mineral consult Pty Ltd managed the test work at ALS' laboratory in Perth and undertook the interpretation of the results.

PIG IRON AND BIOCHAR

Biochar Agreement Signed with Renex

On February 8, 2023 Magnum signed a Memorandum of Understanding (MoU) with Renex Group Pty Ltd (Renex) for the supply of biochar to Magnum's proposed pig iron facility in the USA. Renex has developed world-leading pyrolysis technology that has been operating successfully in Australia and other jurisdictions producing biochar and carbon rich materials. The MoU will involve the following corporate proposals:

- A Joint Venture Company for the production of biochar in the USA
- A Feasibility Study for the construction of a biochar facility in the USA
- Offtake of biochar by Magnum for its facility in the USA

Renex's pyrolysis technology is safe, reliable and proven. Following extensive research and development activities conducted over several years, Renex has developed unique intellectual property in relation to the

production of biochar. Magnum looks forward to operating a biochar plant in the US with Renex with the potential to be operation next year. The plant will produce biochar that can replace PCI and anthracite coals that are presently used in blast furnaces and electric arc furnaces. In parallel Magnum will continue to develop its Buena Vista mine and pig iron project that will also utilise sustainably produced biochar as the reductant. This will allow Magnum to produce "green" and "net-zero carbon" pig iron which will be a critical ingredient feedstock for steelmakers to produce green steel.

CORPORATE:

OTC-QB Listing

Listing on the OTC-QB was completed in January 2023

This allows Magnum's shares to become more easily accessible by North American investors via the OTC Markets Group's mid-tier OTCQB market for worldwide businesses. Magnum shares will be traded in US dollars and traded during regular North American market hours.

Appalachian Iron Project

The purchase of the Appalachian Iron project by Magnum was approved at the EGM of shareholders in January 2023.

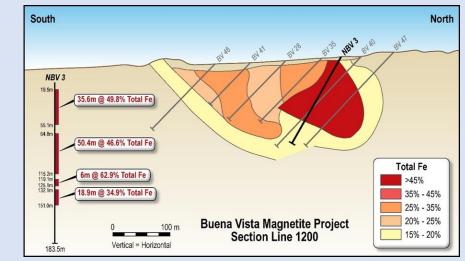
ABOUT THE BUENA VISTA MAGNETITE IRON ORE PROJECT

Location and History

Buena Vista is located approximately 160km east-north-east of Reno in the mining friendly state of Nevada, United States. The Buena Vista Project was discovered in the late 1890's and in the late 1950's to early 1960's around 900,000 tonnes of direct shipping magnetite ore with an estimated grade of 58% Fe was mined. In the 1960's, US Steel Corporation acquired the Buena Vista Project and carried out an extensive exploration program including 230 diamond drill holes and considerable metallurgical test work.

Richmond Mining Limited, an ASX listed company, acquired Buena Vista in 2009 and commenced a detailed exploration program culminating in a definitive feasibility study in 2011 and an updated study in 2013 for an expanded production rate. This included the negotiation of in-principle agreements with existing rail and port operators and the securing of all major mining permits. Detailed costings were completed on the trucking or slurry pipeline options to deliver the concentrate to the rail head located some 50 kilometres from mine site. A significant decline in iron ore prices to an eventual low of less than US\$50/ tonne caused the then proposed development of Buena Vista to be deferred.

Geology


The Buena Vista Project magnetite deposits are the product of late-stage alteration of a localised intrusive local gabbro that resulted in intensely scapolitised lithologies and the deposition of magnetite. The most well-known example of this type of magnetite mineralisation is the Kiruna magnetite deposit in Sweden, which has been in production since the early 1900's. The distribution and nature of the magnetite mineralisation at Buena Vista is a function of ground preparation by faulting and fracturing, forming a series of open fractures, breccia zones and networks of fine fractures. These ground conditions produce variations in mineralization types from massive pods grading +60% magnetite to lighter disseminations grading 10-20% magnetite. Metasomatic magnetite deposits such as those at Buena Vista have important positive beneficiation characteristics over the other main type of magnetite deposit which is a banded iron hosted magnetite, also known as a taconite.

Historic Drilling

The Buena Vista Project has been extensively drilled. The initial cored diamond drilling program was by US Steel Corporation in the early 1960s. A total of around 13,600m was drilled. Over 5,000 samples across the magnetite mineralised zones were assayed by by Davis Tube Recovery (DTR).

In 2010, a confirmatory diamond drill program of around 930m was carried out by Richmond Mining Ltd. This program was designed to twin various 1960s holes to test for continuity as well as provide QA/QC confirmation on the historic drilling.

In 2012, Nevada Iron Ltd carried out a program of 3,420m of diamond and 13,024m of RC drilling, designed to provide infill drilling for an expanded resource estimate, extend the boundaries of the known mineralised areas and provide additional core for metallurgical test work.

JORC(2012) Mineral Resource Estimate

On 23 March 2021, Magnum announced the Buena Vista JORC(2012) Mineral Resource Estimate (MRE):

MRE @ 10% Fe cutoff				
Deposit	Resource Category	Mt	Fe%	DTR%
Section 5	Indicated	34	17.4	21
	Inferred	8	16	18
	Total	42	17	29
	Indicated	117	19.5	23.9
West	Inferred	40	17	21
	Total	157	19	23
	Indicated	0	0	0
East	Inferred	33	19	23
	Total	33	19	23
TOTAL	Indicated	151	19	23.2
	Inferred	81	18	22.2
	Total	232	18.6	22.6

The Company confirms that it is not aware of any new information or data that materially affects the information included in this Quarterly Report and that all material assumptions and technical parameters underpinning the estimates in the announcement of the 'Maiden JORC Resources for the Buena Vista Magnetite Project' dated 23 March 2021 continue to apply and have not materially changed.

Metallurgy

Unlike banded iron hosted magnetite deposits (taconites) where the magnetite mineralisation is finely disseminated in siliceous bedding planes, the Buena Vista ore is of magmatic origin and as a consequence is coarser grained in association with the siliceous host rock.

The prime benefit of this is that metallurgical test work has shown that the primary crush of the Buena Vista ore on average increases the mill grade to +45% irrespective of the primary ore grade. This is an important distinction to taconites and results in reduced energy usage for the subsequent crushing and grinding upgrade to the concentrate grade of +67.5%.

The Buena Vista concentrate contains no deleterious concentrations of impurities with silica typically 1.4-1.5%, alumina less than 1% and negligible sulphur and phosphorous content (around-0.003% respectively). Titanium and vanadium levels are low at circa 0.2% TiO₂ and 0.3% V.

Project Logistics

The Buena Vista Project mine site is ideally located, with towns Fallon (20,000 population) and Lovelock (8,000 population) within close proximity to the mine site. This provides site personnel and their families the opportunity to reside in local communities with existing infrastructure and facilities.

The mine site is around 50kms from the Union Pacific rail line which connects with multiple export port options including Stockton, West Sacramento, Oakland, San Francisco and Richmond.

Grid power is available within 40km of the deposits and sufficient water can be sourced from ground water aquifers located in the North Carson sink.

The Nevada Department of Conservation and Natural Resources has already granted the required water rights for the life of the mine.

The mine is located in Churchill County in the State of Nevada which has a strong history of supporting mining developments and is easily accessed via the sealed Coal Canyon road.

GREEN IRON – A PIONEER IN THE INDUSTRY

Magnum is targeting the growing demand for the premium "green iron" market.

By the value adding processing of superior quality Buena Vista magnetite iron ore into carbon neutral pig iron products on site, the project will be ideally positioned to capture high returns for the Company's shareholders.

Pig iron is a major raw material for Electric Arc Furnace steel making process and with new EAF plants already under construction and planned, global pig iron trade is expected to rise rapidly. For the transition into a carbon neutral economy and to meet emission restrictions, all major economies are competing for EAF raw materials. There are 30 million tonnes of new EAF production capacities planned in the USA alone with over 7 million tons of existing EAF producers surrounding Magnum's project. The Buena Vista Green pig iron project will become the FIRST and ONLY green pig iron producer on the West Coast USA.

Key development milestones already achieved

- Buena Vista Project mine schedule and initial pit design completed.
- Purchase of strategic landholding at Colorado for railway logistics hub proximal to the Buena Vista Project
- Review of dry magnetic beneficiation plant design & product iron ore quality completed.
- Successful green pig iron pilot plant test production completed.
- Pig Iron production process identified.

Mining and dry beneficiation plant layout

A provisional operation layout for Buena Vista has now been completed by SRK Consulting and covers the initial two years of production at the mine. The provisional plant layout has been carried out by Samuel Engineering.

Iron ore product quality

Extensive historical metallurgical test work has shown that Buena Vista ore beneficiates very easily to a +60% Fe low impurity concentrate (ASX: 29 Oct 2021)). A 'dry concentrate' process can be used to produce the magnetite concentrate feed for the proposed integrated processing facility, so significantly reducing the capital and operating costs.

MINING TENEMENTS HELD AT THE END OF THE QUARTER

The following mining tenements were held by Magnum at the end of the Quarter. All are held as mineral claims in the State of Nevada, USA (note: BLM refers to Bureau of Land Management, USA).

Claim Name	BLM Serial Nos.	BLM Lead Serial No.	Claim Type
KMD 1	NMC956471	NMC956471	Lode
KMD 2	NMC956472	NMC956471	Lode
KMD 3	NMC956473	NMC956471	Lode
KMD 4	NMC956474	NMC956471	Lode
KMD 5	NMC956475	NMC956471	Lode
KMD 6	NMC956476	NMC956471	Lode
KMD 7	NMC956477	NMC956471	Lode
KMD 8	NMC956478	NMC956471	Lode
KMD 9	NMC956479	NMC956471	Lode
KMD 10	NMC1049632	NMC1049632	Lode
KMD 11	NMC956481	NMC956471	Lode
KMO 12	NMC956482	NMC956471	Lode
KMO 13	МИС956483	NMC956471	Lode

KMD 14	NMC956484	NMC956471	Lode
KMD 15	NMC956485	NMC956471	Lode
KMD 16	NMC956486	NMC956471	Lode
KM0 17	NMC956487	NMC956471	Lode
KMD 18	NMC956488	NMC956471	Lode
KMD 19	NMC956489	NMC956471	Lode
KMD 20	NMC956490	NMC956471	Lode
KMD 21	NMC956491	NMC956471	Lode
KMD 22	NMC956492	NMC956471	Lode
KMD 23	NMC956493	NMC956471	Lode
KMD 24	NMC956494	NMC956471	Lode
KMD 25	NMC956495	NMC956471	Lode
KMD 26	NMC956496	NMC956471	Lode
KMD 27	NMC956497	NMC956471	Lode
KMD 28	NMC956498	NMC956471	Lode
KMD 29	NMC956499	NMC956471	Lode
KMD 30	NMC956500	NMC956471	Lode
KMD 31	NMC956501	NMC956471	Lode
KMD 32	NMC956502	NMC956471	Lode
KMD 33	NMC956503	NMC956471	Lode
KMD 34	NMC956504	NMC956471	Lode
KMD 35	NMC956505	NMC956471	Lode
KMD 36	NMC956506	NMC956471	Lode
KMD 37	NMC956507	NMC956471	Lode
KMD 38	NMC956508	NMC956471	Lode
KMD 39	NMC956509	NMC956471	Lode
KMD 40	NMC956510	NMC956471	Lode
KMD 41	NMC956511	NMC956471	Lode
KMD 42	NMC956512	NMC956471	Lode
KMD 43	NMC956513	NMC956471	Lode
KMD 44	NMC956514	NMC956471	Lode
KMD 45	NMC956515	NMC956471	Lode
KMD 46	NMC956516	NMC956471	Lode
KMD 47	NMC956517	NMC956471	Lode
KMD 48	NMC956518	NMC956471	Lode
KMD 49	NMC956519	NMC956471	Lode
KMD 50	NMC956520	NMC956471	Lode
KMD 51	NMC956521	NMC956471	Lode
KMD 52	NMC956522	NMC956471	Lode
KMD 53	NMC956523	NMC956471	Lode
KMD 54	NMC956524	NMC956471	Lode
KMD 55	NMC956525	NMC956471	Lode
KMD 56	NMC956526	NMC956471	Lode
KMD 57	NMC1049633	NMC1049632	Lode
KMD 58	NMC1049634	NMC1049632	Lode
KMD 59	NMC979428	NMC979387	Lode
KMD 60	NMC979429	NMC979387	Lode
KMD 61	NMC979430	NMC979387	Lode
KMD 62	NMC979431	NMC979387	Lode
KMD 63	NMC979432	NMC979387	Lode

KMD 64	NMC979433	NMC979387	Lode
KMD 65	NMC979434	NMC979387	Lode
KMD 66	NMC979435	NMC979387	Lode
KMD 67	NMC979436	NMC979387	Lode
KMD 68	NMC979437	NMC979387	Lode
KMD 69	NMC979438	NMC979387	Lode
KMD 70	NMC979439	NMC979387	Lode
NvFe 1	NMC1045283	NMC1045283	Lode
NvFe 2	NMC1045284	NMC1045283	Lode
NvFe 3	NMC1045285	NMC1045283	Lode
NvFe 4	NMC1045286	NMC1045283	Lode
NvFe 5	NMC1045287	NMC1045283	Lode
NvFe 6	NMC1045288	NMC1045283	Lode
NvFe 7	NMC1045289	NMC1045283	Lode
NvFe 8	NMC1045290	NMC1045283	Lode
NvFe 9	NMC1068429	NMC1068429	Lode
NvFe 10	NMC1068430	NMC1068429	Lode
NvFe 11	NMC1068431	NMC1068429	Lode
NvFe 12	NMC1068432	NMC1068429	Lode
NvFe 13	NMC1068433	NMC1068429	Lode
NvFe 14	NMC1068434	NMC1068429	Lode
NvFe 15	NMC1068435	NMC1068429	Lode
NvFe 16	NMC1068436	NMC1068429	Lode
NvFe 17	NMC1068437	NMC1068429	Lode
NvFe 18	NMC1068438	NMC1068429	Lode
NvFe 19	NMC1068439	NMC1068429	Lode
NvFe 20	NMC1075996	NMC1075996	Lode
NvFe 21	NMC1075997	NMC1075996	Lode
NvFe 22	NMC1075998	NMC1075996	Lode
NvFe 23	NMC1075999	NMC1075996	Lode
NvFe 24	NMC1076000	NMC1075996	Lode
NvFe 25	NMC1076001	NMC1075996	Lode
NvFe 26	NMC1076002	NMC1075996	Lode
NvFe 27	NMC1076003	NMC1075996	Lode
NvFe 28	NMC1076004	NMC1075996	Lode
NvFe 29	NMC1076005	NMC1075996	Lode
NvFe 30	NMC1076006	NMC1075996	Lode
NvFe 31	NMC1076007	NMC1075996	Lode
NvFe 32	NMC1076008	NMC1075996	Lode
NvFe 33	NMC1076009	NMC1075996	Lode
NvFe 34	NMC1076010	NMC1075996	Lode
NvFe 35	NMC1076011	NMC1075996	Lode
NvFe 36	NMC1076012	NMC1075996	Lode
NvFe 37	NMC1076013	NMC1075996	Lode
NvFe 38	NMC1076014	NMC1075996	Lode
NvFe 39	NMC1076015	NMC1075996	Lode
NvFe 40	NMC1076016	NMC1075996	Lode
NvFe 41	NMC1076017	NMC1075996	Lode
NvFe 42	NMC1076018	NMC1075996	Lode
NvFe 43	NMC1076019	NMC1075996	Lode

NvFe	e 44	NMC1076020	NMC1075996	Lode
NvFe	45	NMC1076021	NMC1075996	Lode
NvFe	46	NMC1076022	NMC1075996	Lode
NvFe	e 47	NMC1076023	NMC1075996	Lode
NvFe	48	NMC1076024	NMC1075996	Lode
NvFe	49	NMC1076025	NMC1075996	Lode
NvFe	e 50	NMC1076026	NMC1075996	Lode
NvFe	51	NMC1076027	NMC1075996	Lode
NvFe	52	NMC1076028	NMC1075996	Lode
NvFe	53	NMC1076029	NMC1075996	Lode
NvFe	9 54	NMC1076030	NMC1075996	Lode
NvFe	55	NMC1076031	NMC1075996	Lode
NvFe	56	NMC1076032	NMC1075996	Lode
NvFe	57	NMC1076033	NMC1075996	Lode
NvFe	58	NMC1076034	NMC1075996	Lode
NvFe	59	NMC1076035	NMC1075996	Lode
NvFe	e 60	NMC1076036	NMC1075996	Lode
NvFe	9 61	NMC1076037	NMC1075996	Lode
NvFe	962	NMC1076038	NMC1075996	Lode
NvFe	9 63	NMC1076039	NMC1075996	Lode
NvFe	9 64	NMC1076040	NMC1075996	Lode
NvFe	65	NMC1076041	NMC1075996	Lode
NvFe	966	NMC1076042	NMC1075996	Lode
NvFe	9 67	NMC1076043	NMC1075996	Lode
NvFe	9 68	NMC1076044	NMC1075996	Lode
NvFe	9 69	NMC1076045	NMC1075996	Lode
NvFe	: 70	NMC1076046	NMC1075996	Lode
NvFe	971	NMC1076047	NMC1075996	Lode
NvFe	972	NMC1076048	NMC1075996	Lode
NvFe	973	NMC1076049	NMC1075996	Lode
NvFe	e 74	NMC1076050	NMC1075996	Lode
NvFe	975	NMC1076051	NMC1075996	Lode
NvFe	976	NMC1076052	NMC1075996	Lode
NvFe	277	NMC1076053	NMC1075996	Lode
NvFe	e 78	NMC1076054	NMC1075996	Lode
NvFe	979	NMC1076055	NMC1075996	Lode
NvFe	980	NMC1076056	NMC1075996	Lode
NvFe	981	NMC1076057	NMC1075996	Lode
NvFe	82	NMC1076058	NMC1075996	Lode
NvFe	83	NMC1076059	NMC1075996	Lode
NvFe	984	NMC1076060	NMC1075996	Lode
NvFe		NMC1076061	NMC1075996	Lode
NvFe	86	NMC1076062	NMC1075996	Lode
NvFe		NMC1076063	NMC1075996	Lode
NvFe		NMC1076064	NMC1075996	Lode
NvFe		NMC1076065	NMC1075996	Lode
NvFe		NMC1076066	NMC1075996	Lode
NvFe		NMC1076067	NMC1075996	Lode
NvFe		NMC1076068	NMC1075996	Lode
NvFe	93	NMC1076069	NMC1075996	Lode

NvFe 94 NvFe 95 NvFe 96 NvFe 97 NvFe 98 NvFe 99 NvFe 100 NvFe 101 NvFe 102 NvFe 103 NvFe 104 NvFe 105 NvFe 106 NvFe 108 NvFe 109 NvFe 110 NvFe 111 NvFe 112 NvFe 113 NvFe 114 NvFe 115 HNVFE NO 1 HNVFE NO 2 HNVFE NO 3 HNVFE NO 4 HNVFE NO 5 HNVFE NO 6 HNVFE NO 7 **HNVFE NO 8** HNVFE NO 9 HNVFE NO 10 HNVFE NO 11 HNVFE NO 12 HNVFE NO 13 **HNVFE NO 14 HNVFE NO 15** HNVFE NO 16 HNVFE NO 17 **HNVFE NO 18** HNVFE NO 26 HNVFE NO 27 HNVFE NO 28 HNVFE NO 29 HNVFE NO 30 HNVFE NO 31 HNVFE NO 32 HNVFE NO 33 HNVFE NO 34 HNVFE NO 35 HNVFE NO 36 NMC1076070 NMC1076071 NMC1076072 NMC1076073 NMC1076074 NMC1076075 NMC1076076 NMC1076077 NMC1076078 NMC1076079 NMC1076080 NMC1076081 NMC1076082 NMC1076083 NMC1076084 NMC1076085 NMC1076086 NMC1076087 NMC1076088 NMC1076089 NMC1076090 NMC1093640 NMC1093641 NMC1093642 NMC1093643 NMC1093644 NMC1093645 NMC1093646 NMC1093647 NMC1093648 NMC1093649 NMC1093650 NMC1093651 NMC1093652 NMC1093653 NMC1093654 NMC1093655 NMC1093656 NMC1093657 NMC1093665 NMC1093666 NMC1093667 NMC1093668 NMC1093669 NMC1093670 NMC1093671 NMC1093672 NMC1093673 NMC1093674 NMC1093675 NMC1075996 NMC1093640 NMC1093640

Lode Mill Site Mill Site

I ode

HNVFE NO 37	NMC1093676	NMC1093640	Mill Site
HNVFE NO 38	NMC1093677	NMC1093640	Mill Site
HNVFE NO 39	NMC1093678	NMC1093640	Mill Site
HNVFE NO 40	NMC1093679	NMC1093640	Mill Site
HNVFE NO 41	NMC1093680	NMC1093640	Mill Site
HNVFE NO 42	NMC1093681	NMC1093640	Mill Site
HNVFE NO 43	NMC1093682	NMC1093640	Mill Site
HNVFE NO 44	NMC1093683	NMC1093640	Mill Site
HNVFE NO 45	NMC1093684	NMC1093640	Mill Site
HNVFE NO 46	NMC1093685	NMC1093640	Mill Site
HNVFE NO 47	NMC1093686	NMC1093640	Mill Site
HNVFE NO 48	NMC1093687	NMC1093640	Mill Site

ASX: ANNOUNCEMENTS RELEASED DURING THE QUARTER

- 09-Jan-23 MGU Completes OTC Listing
- 10-Jan-23 Bulk samples to optimise recoveries
- 13-Jan-23 MGU showing an additional 407m-540m tonnes of fe
- 16-Jan-23 Lithium discovered at Buena Vista
- 16-Jan-23 MGU Poll results
- 19-Jan-23 Application for quotation of securities MGU
- 23-Jan-23 Listed options distribution schedule and top holders report
- 23-Jan-23 Options cleansing notice
- 23-Jan-23 Quarterly activities report
- 23-Jan-23 Appendix 5B
- 24-Jan-23 Application for quotation of securities MGU
- 27-Jan-23 Options cleansing notice
- 06-Feb-23 Application for quotation of securities MGU
- 08-Feb-23 Biochar agreement signed with Renex
- 10-Mar-23 Test work confirms over 68% high grade product
- 22-Mar-23 Magnum to drill test high grade DSO opportunity
- 29-Mar-23 MGU Annual report for year ended December 31, 2022
- 29-Mar-23 Appendix 4G

APPENDIX 5B

In accordance with ASX Listing Rule 5.3.2, the Company advises that no mining development or production activities were conducted during the March 2023 Quarter.

As set out in the attached Appendix 5B, exploration expenditure during the quarter totalled \$346.69k. Payments to related parties totalling A\$98.5k, consisted of remuneration paid to executive and non-executive directors and an associate of a director under respective service agreements.

This document has been authorised for release to the ASX by the Company's Board of Directors.

Further information please contact:

John Dinan Non-Executive Director and Company Secretary

Magnum Mining and Exploration Limited John Dinan +61 2 8316 3989 email: info@mmel.com.au