

ASX Release 25 October 2023

Magnum Mining and Exploration Limited ABN 70 003 170 376

ASX Code MGU

Chief Executive Officer
Neil Goodman

Non-Executive Chairman Anoosh Manzoori

Non-Executive Directors Athan Lekkas Matt Latimore

Company Secretary Luke Martino

Issued Shares 803,861,403

Listed Options 193,996,767

Unlisted Securities (Options & Performance Rights)
133,000,000

Email

info@mmel.com.au

Website

www.mmel.com.au

311-313 Hay Street Subiaco WA 6008

T+61 8 6489 0600

QUARTERLY ACTIVITIES REPORT 30 SEPTEMBER 2023

Magnum Mining & Exploration Limited (ASX: MGU) (Magnum or the Company) is pleased to provide a summary of its activities on the Buena Vista Magnetite Project in Nevada, USA.

HIGHLIGHTS

Buena Vista

- Drilling and surface sampling started and completed on outcrops.
- Feasibility study refresh by Samuels Engineering started and completed
- Scoping study results published
- Stockpile sampling and testing completed

DRI Grade Concentrate, Pig Iron and Biochar

- Anglo American enters into concentrate offtake MOU
- Midmetal enters into MOU for pig iron project in Saudi Arabia

Corporate

New York based EGS lawyers appointed to advance dual listing.

Tel: +61 8 6489 0699

Email: info@mmel.com.au

Web: www.mmel.com.au

- Appointment of New York based EAS Advisers
- \$2.65M Raised for Buena Vista Project

BUENA VISTA MAGNETITE PROJECT

The Company's flagship asset is the Buena Vista Magnetite Project in Nevada, USA (Figure 1). The project has a JORC (2012) compliant Resource that the Board of Magnum is actively progressing to mine and downstream processing development using novel technology. The Company is focusing on becoming a supplier of choice of green pig iron to the world's electric arc furnace markets.

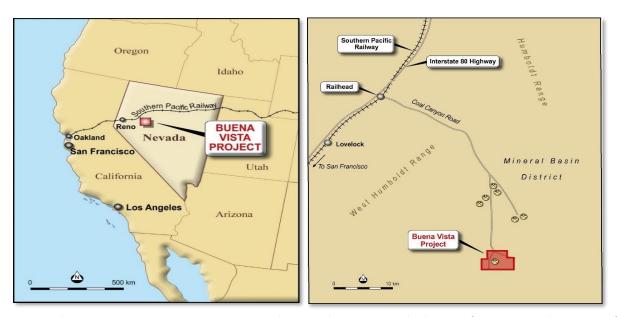


Figure 1: The Buena Vista Magnetite Project is located in central western Nevada close to infrastructure and in a mining friendly jurisdiction.

Drilling and surface sampling started and completed

Channel sampling – ie, taking a continuous line of rock chips along an outcrop, was done to determine the bulk grades of massive and disseminated magnetite outcrops. The samples were collected across the face of the outcrops and averaged 7.5′ (2.3m) in length. Buena Vista is an intrusive related deposit and has no consistent dip and strike. The best iron grade recorded was 66.7% Fe over two feet, while the 43 samples averaged 47.4% Fe (see ASX release: 27 July 2023)

Feasibility study refresh by Samuels Engineering started and completed.

A feasibility study refresh was started by Samuels Engineering in July (see ASX release: 14 July 2023) and completed in August (see ASX release: 21 August 2023). The technical refresh identified industry standard flow sheet processes driven by standard and readily available equipment. While the original aim was to target a 450,000 tonnes per year (tpa) concentrate production through single shift processing, Magnum and Samuel identified that the equipment chosen has the capacity and robustness to operate on a 24/7 basis. Magnum's Board has ratified this approach, with the conservative production rate of 800,000tpa being adopted

Scoping study results published

A Scoping Study for a 1,600,000 tonnes per year concentrate plant was completed in 2023 but an announcement of the results was held up for nearly 12 months due to regulatory body reviews. The results were finally published in August (see ASX release: 14 August 2023). A capital cost (CAPEX) of US\$182 to \$378M and an operating cost (OPEX) of US\$44 to \$90/tonne are estimated, with an NPV $_{10}$ of \$360M to \$748M.

Stockpile sampling started and completed

Magnum undertook a surface sampling programme and volume estimation of the stockpiles that exist on its 100% owned and controlled Buena Vista iron mine site in Nevada, USA (see ASX release: 16 August 2023). The stockpiles are estimated to hold 411,000 to 894,000 tonnes at 15% to 45% Fe, exclusive of the existing Indicated and Inferred Resources of 232Mt @ 18.6% Fe (JORC 2012), announced on 23 March 2021).

IRON ORE CONCENTRATE, PIG IRON AND BIOCHAR

Anglo American enters into offtake MOU

Magnum entered into a Memorandum of Understanding (MOU) with Anglo American for the offtake of iron ore concentrate associated with the proposed operations at its 100% owned Buena Vista Green Iron Project in Nevada, USA. (see ASX release: September 8, 2023).

Midmetal enters into MOU

Magnum entered into a nonbinding MOU with Middle East for Metallic Industrial ("Midmetal"). The MOU is expected to lead to the negotiation of a definitive agreement to form a strategic alliance for the development of Magnum's proposed magnetite mine and processing plant at its wholly-owned Buena Iron Project in Nevada, and to pursue the development of HIsmelt facilities in the USA or Saudi Arabia (see ASX release: 1 September 2023)

CORPORATE:

New York based EGS lawyers appointed to advance capital raising and dual listing

Magnum has appointed New York City based law firm Ellenoff Grossman & Schole LLP (EGS) to represent the Company in its capital raising activities in the USA. Specific goals are to:

- Initialise a private placement to introduce the Company to the North American capital markets, and
- Pursue a strategy of listing on a major US stock exchange

New York based EAS Advisers Appointed to Advance Financing Strategy

On 16th June 2023, the Company appointed EAS Advisers as its' corporate strategist, to shape its financing strategy and access capital markets for the Buena Vista Iron Project in Nevada, USA. EAS will assist Magnum to provide investor outreach in the USA, advise on corporate issues and strategic planning, provide analysis and advice on capital raising, advise on equity and debt capital market access and facilitate introductions to US banks and institutions.

Successful Raising of \$2.65m to Advance the Buena Vista Iron Project

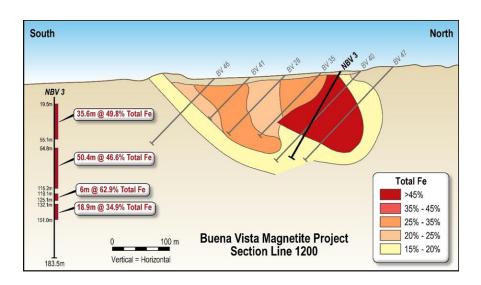
On 15 September 2023, Magnum announced to the market the successful completion of a placement to raise \$2,650,000 before costs, through a one-tranche placement, with a 1 for 2 free attaching option (Placement). The Placement was conducted at a price of \$0.033 per share via a placement to sophisticated investors with the funds raised to be used to accelerate the development of the Buena Vista Iron project and working capital.

ABOUT THE BUENA VISTA MAGNETITE IRON ORE PROJECT

Location and History

Buena Vista is located approximately 160km east-north-east of Reno in the mining friendly state of Nevada, United States. The Buena Vista Project was discovered in the late 1890's and in the late 1950's to early 1960's around 900,000 tonnes of direct shipping magnetite ore with an estimated grade of 58% Fe was mined. In the 1960's, US Steel Corporation acquired the Buena Vista Project and carried out an extensive exploration program including 230 diamond drill holes and considerable metallurgical test work.

Geology


The Buena Vista Project magnetite deposits are the product of late-stage alteration of a localised intrusive local gabbro that resulted in intensely scapolitised lithologies and the deposition of magnetite. The most well-known example of this type of magnetite mineralisation is the Kiruna magnetite deposit in Sweden, which has been in production since the early 1900's. The distribution and nature of the magnetite mineralisation at Buena Vista is a function of ground preparation by faulting and fracturing, forming a series of open fractures, breccia zones and networks of fine fractures. These ground conditions produce variations in mineralization types from massive pods grading +60% magnetite to lighter disseminations grading 10-20% magnetite. Metasomatic magnetite deposits such as those at Buena Vista have important positive beneficiation characteristics over the other main type of magnetite deposit which is a banded iron hosted magnetite, also known as a taconite.

Historic Drilling

The Buena Vista Project has been extensively drilled. The initial cored diamond drilling program was by US Steel Corporation in the early 1960s. A total of around 13,600m was drilled. Over 5,000 samples across the magnetite mineralised zones were assayed by Davis Tube Recovery (DTR).

In 2010, a confirmatory diamond drill program of around 930m was carried out by Richmond Mining Ltd. This program was designed to twin various 1960s holes to test for continuity as well as provide QA/QC confirmation on the historic drilling.

In 2012, Nevada Iron Ltd carried out a program of 3,420m of diamond and 13,024m of RC drilling, designed to provide infill drilling for an expanded resource estimate, extend the boundaries of the known mineralised areas and provide additional core for metallurgical test work.

JORC(2012) Mineral Resource Estimate

On 23 March 2021, Magnum announced the Buena Vista JORC(2012) Mineral Resource Estimate (MRE):

	MRE @ 10% Fe cutoff			
Deposit	Resource Category	Mt	Fe%	DTR%
	Indicated	34	17.4	21
Section 5	Inferred	8	16	18
	Total	42	17	29
	Indicated	117	19.5	23.9
West	Inferred	40	17	21
	Total	157	19	23
	Indicated	0	0	0
East	Inferred	33	19	23
	Total	33	19	23
	Indicated	151	19	23.2
TOTAL	Inferred	81	18	22.2
	Total	232	18.6	22.6

The Company confirms that it is not aware of any new information or data that materially affects the information included in this Quarterly Report and that all material assumptions and technical parameters underpinning the estimates in the announcement of the 'Maiden JORC Resources for the Buena Vista Magnetite Project' dated 23 March 2021 continue to apply and have not materially changed.

Metallurgy

Unlike banded iron hosted magnetite deposits (taconites) where the magnetite mineralisation is finely disseminated in siliceous bedding planes, the Buena Vista ore is of magmatic origin and consequently is coarser grained in association with the siliceous host rock.

The prime benefit of this is that metallurgical test work has shown that the primary crush of the Buena Vista ore on average increases the mill grade to +45% irrespective of the primary ore grade. This is an important distinction to taconites and results in reduced energy usage for the subsequent crushing and grinding upgrade to the concentrate grade of +67.5%.

The Buena Vista concentrate contains no deleterious concentrations of impurities with silica typically 1.4-1.5%, alumina less than 1% and negligible sulphur and phosphorous content (around-0.003% respectively). Titanium and vanadium levels are low at circa 0.2% TiO_2 and 0.3% V.

Project Logistics

The Buena Vista Project mine site is ideally located, with towns Fallon (20,000 population) and Lovelock (8,000 population) within close proximity to the mine site. This provides site personnel and their families the opportunity to reside in local communities with existing infrastructure and facilities.

The mine site is around 50kms from the Union Pacific rail line which connects with multiple export port options including Stockton, West Sacramento, Oakland, San Francisco and Richmond.

Grid power is available within 40km of the deposits and sufficient water can be sourced from ground water aquifers located in the North Carson sink.

The Nevada Department of Conservation and Natural Resources has already granted the required water rights for the life of the mine.

The mine is located in Churchill County in the State of Nevada which has a strong history of supporting mining developments and is easily accessed via the sealed Coal Canyon road.

MINING TENEMENTS HELD AT THE END OF THE QUARTER

The following mining tenements were held by Magnum at the end of the Quarter. All are held as mineral claims in the State of Nevada, USA (note: BLM refers to Bureau of Land Management, USA).

Claim Name	BLM Serial Nos.	BLM Lead Serial No.	Claim Type
KMD 1	NMC956471	NMC956471	Lode
KMD 2	NMC956472	NMC956471	Lode
KMD 3	NMC956473	NMC956471	Lode
KMD 4	NMC956474	NMC956471	Lode
KMD 5	NMC956475	NMC956471	Lode
KMD 6	NMC956476	NMC956471	Lode
KMD 7	NMC956477	NMC956471	Lode
KMD 8	NMC956478	NMC956471	Lode
KMD 9	NMC956479	NMC956471	Lode
KMD 10	NMC1049632	NMC1049632	Lode
KMD 11	NMC956481	NMC956471	Lode
KMO 12	NMC956482	NMC956471	Lode
KMO 13	МИС956483	NMC956471	Lode
KMD 14	NMC956484	NMC956471	Lode
KMD 15	NMC956485	NMC956471	Lode
KMD 16	NMC956486	NMC956471	Lode
KM0 17	NMC956487	NMC956471	Lode
KMD 18	NMC956488	NMC956471	Lode
KMD 19	NMC956489	NMC956471	Lode
KMD 20	NMC956490	NMC956471	Lode
KMD 21	NMC956491	NMC956471	Lode
KMD 22	NMC956492	NMC956471	Lode
KMD 23	NMC956493	NMC956471	Lode
KMD 24	NMC956494	NMC956471	Lode
KMD 25	NMC956495	NMC956471	Lode
KMD 26	NMC956496	NMC956471	Lode
KMD 27	NMC956497	NMC956471	Lode
KMD 28	NMC956498	NMC956471	Lode
KMD 29	NMC956499	NMC956471	Lode
KMD 30	NMC956500	NMC956471	Lode
KMD 31	NMC956501	NMC956471	Lode
KMD 32	NMC956502	NMC956471	Lode
KMD 33	NMC956503	NMC956471	Lode
KMD 34	NMC956504	NMC956471	Lode
KMD 35	NMC956505	NMC956471	Lode
KMD 36	NMC956506	NMC956471	Lode
KMD 37	NMC956507	NMC956471	Lode
KMD 38	NMC956508	NMC956471	Lode
KMD 39	NMC956509	NMC956471	Lode
KMD 40	NMC956510	NMC956471	Lode
KMD 41	NMC956511	NMC956471	Lode
KMD 42	NMC956512	NMC956471	Lode
KMD 43	NMC956513	NMC956471	Lode
KMD 44	NMC956514	NMC956471	Lode
KMD 45	NMC956515	NMC956471	Lode
KMD 46	NMC95Б51Б	NMC956471	Lode
KMD 47	NMC956517	NMC956471	Lode

KMD 48	NMC956518	NMC956471	Lode
KMD 49	NMC956519	NMC956471	Lode
KMD 50	NMC956520	NMC956471	Lode
KMD 51	NMC956521	NMC956471	Lode
KMD 52	NMC956522	NMC956471	Lode
KMD 53	NMC956523	NMC956471	Lode
KMD 54	NMC956524	NMC956471	Lode
KMD 55	NMC956525	NMC956471	Lode
KMD 56	NMC956526	NMC956471	Lode
KMD 57	NMC1049633	NMC1049632	Lode
KMD 58	NMC1049634	NMC1049632	Lode
KMD 59	NMC979428	NMC979387	Lode
KMD 60	NMC979429	NMC979387	Lode
KMD 61	NMC979430	NMC979387	Lode
KMD 62	NMC979431	NMC979387	Lode
KMD 63	NMC979432	NMC979387	Lode
KMD 64	NMC979433	NMC979387	Lode
KMD 65	NMC979434	NMC979387	Lode
KMD 66	NMC979435	NMC979387	Lode
KMD 67	NMC979436	NMC979387	Lode
KMD 68	NMC979437	NMC979387	Lode
KMD 69	NMC979438	NMC979387	Lode
KMD 70	NMC979439	NMC979387	Lode
NvFe 1	NMC1045283	NMC1045283	Lode
NvFe 2	NMC1045284	NMC1045283	Lode
NvFe 3	NMC1045285	NMC1045283	Lode
NvFe 4	NMC1045286	NMC1045283	Lode
NvFe 5	NMC1045287	NMC1045283	Lode
NvFe 6	NMC1045288	NMC1045283	Lode
NvFe 7	NMC1045289	NMC1045283	Lode
NvFe 8	NMC1045290	NMC1045283	Lode
NvFe 9	NMC1068429	NMC1068429	Lode
NvFe 10	NMC1068430	NMC1068429	Lode
NvFe 11	NMC1068431	NMC1068429	Lode
NvFe 12	NMC1068432	NMC1068429	Lode
NvFe 13	NMC1068433	NMC1068429	Lode
NvFe 14	NMC1068434	NMC1068429	Lode
NvFe 15	NMC1068435	NMC1068429	Lode
NvFe 16	NMC1068436	NMC1068429	Lode
NvFe 17	NMC1068437	NMC1068429	Lode
NvFe 18	NMC1068438	NMC1068429	Lode
NvFe 19	NMC1068439	NMC1068429	Lode
NvFe 20	NMC1075996	NMC1075996	Lode
NvFe 21	NMC1075997	NMC1075996	Lode
NvFe 22	NMC1075998	NMC1075996	Lode
NvFe 23	NMC1075999	NMC1075996	Lode
NvFe 24	NMC1076000	NMC1075996	Lode
NvFe 25	NMC1076001	NMC1075996	Lode
NvFe 26	NMC1076002	NMC1075996	Lode
NvFe 27	NMC1076003	NMC1075996	Lode
NvFe 28	NMC1076004	NMC1075996	Lode
NvFe 29	NMC1076005	NMC1075996	Lode

NvFe 30	NMC1076006	NMC1075996	Lode
NvFe 31	NMC1076007	NMC1075996	Lode
NvFe 32	NMC1076008	NMC1075996	Lode
NvFe 33	NMC1076009	NMC1075996	Lode
NvFe 34	NMC1076010	NMC1075996	Lode
NvFe 35	NMC1076011	NMC1075996	Lode
NvFe 36	NMC1076012	NMC1075996	Lode
NvFe 37	NMC1076013	NMC1075996	Lode
NvFe 38	NMC1076014	NMC1075996	Lode
NvFe 39	NMC1076015	NMC1075996	Lode
NvFe 40	NMC1076016	NMC1075996	Lode
NvFe 41	NMC1076017	NMC1075996	Lode
NvFe 42	NMC1076018	NMC1075996	Lode
NvFe 43	NMC1076019	NMC1075996	Lode
NvFe 44	NMC1076020	NMC1075996	Lode
NvFe 45	NMC1076021	NMC1075996	Lode
NvFe 46	NMC1076022	NMC1075996	Lode
NvFe 47	NMC1076023	NMC1075996	Lode
NvFe 48	NMC1076024	NMC1075996	Lode
NvFe 49	NMC1076025	NMC1075996	Lode
NvFe 50	NMC1076026	NMC1075996	Lode
NvFe 51	NMC1076027	NMC1075996	Lode
NvFe 52	NMC1076028	NMC1075996	Lode
NvFe 53	NMC1076029	NMC1075996	Lode
NvFe 54	NMC1076030	NMC1075996	Lode
NvFe 55	NMC1076031	NMC1075996	Lode
NvFe 56	NMC1076032	NMC1075996	Lode
NvFe 57	NMC1076033	NMC1075996	Lode
NvFe 58	NMC1076034	NMC1075996	Lode
NvFe 59	NMC1076035	NMC1075996	Lode
NvFe 60	NMC1076036	NMC1075996	Lode
NvFe 61	NMC1076037	NMC1075996	Lode
NvFe 62	NMC1076038	NMC1075996	Lode
NvFe 63	NMC1076039	NMC1075996	Lode
NvFe 64	NMC1076040	NMC1075996	Lode
NvFe 65	NMC1076041	NMC1075996	Lode
NvFe 66	NMC1076042	NMC1075996	Lode
NvFe 67	NMC1076043	NMC1075996	Lode
NvFe 68	NMC1076044	NMC1075996	Lode
NvFe 69	NMC1076045	NMC1075996	Lode
NvFe 70	NMC1076046	NMC1075996	Lode
NvFe 71	NMC1076047	NMC1075996	Lode
NvFe 72	NMC1076048	NMC1075996	Lode
NvFe 73	NMC1076049	NMC1075996	Lode
NvFe 74	NMC1076050	NMC1075996	Lode
NvFe 75	NMC1076051	NMC1075996	Lode
NvFe 76	NMC1076052	NMC1075996	Lode
NvFe 77	NMC1076053	NMC1075996	Lode
NvFe 78	NMC1076054	NMC1075996	Lode
NvFe 79	NMC1076055	NMC1075996	Lode
NvFe 80	NMC1076056	NMC1075996	Lode
NvFe 81	NMC1076057	NMC1075996	Lode

NvFe 82	NMC1076058	NMC1075996	Lode
NvFe 83	NMC1076059	NMC1075996	Lode
NvFe 84	NMC1076060	NMC1075996	Lode
NvFe 85	NMC1076061	NMC1075996	Lode
NvFe 86	NMC1076062	NMC1075996	Lode
NvFe 87	NMC1076063	NMC1075996	Lode
NvFe 88	NMC1076064	NMC1075996	Lode
NvFe 89	NMC1076065	NMC1075996	Lode
NvFe 90	NMC1076066	NMC1075996	Lode
NvFe 91	NMC1076067	NMC1075996	Lode
NvFe 92	NMC1076068	NMC1075996	Lode
NvFe 93	NMC1076069	NMC1075996	Lode
NvFe 94	NMC1076070	NMC1075996	Lode
NvFe 95	NMC1076071	NMC1075996	Lode
NvFe 96	NMC1076072	NMC1075996	Lode
NvFe 97	NMC1076073	NMC1075996	Lode
NvFe 98	NMC1076074	NMC1075996	Lode
NvFe 99	NMC1076075	NMC1075996	Lode
NvFe 100	NMC1076076	NMC1075996	Lode
NvFe 101	NMC1076077	NMC1075996	Lode
NvFe 102	NMC1076078	NMC1075996	Lode
NvFe 103	NMC1076079	NMC1075996	Lode
NvFe 104	NMC1076080	NMC1075996	Lode
NvFe 105	NMC1076081	NMC1075996	Lode
NvFe 106	NMC1076082	NMC1075996	Lode
NvFe 108	NMC1076083	NMC1075996	Lode
NvFe 109	NMC1076084	NMC1075996	Lode
NvFe 110	NMC1076085	NMC1075996	Lode
NvFe 111	NMC1076086	NMC1075996	Lode
NvFe 112	NMC1076087	NMC1075996	Lode
NvFe 113	NMC1076088	NMC1075996	Lode
NvFe 114	NMC1076089	NMC1075996	Lode
NvFe 115	NMC1076090	NMC1075996	Lode
HNVFE NO 1	NMC1093640	NMC1093640	Mill Site
HNVFE NO 2	NMC1093641	NMC1093640	Mill Site
HNVFE NO 3	NMC1093642	NMC1093640	Mill Site
HNVFE NO 4	NMC1093643	NMC1093640	Mill Site
HNVFE NO 5	NMC1093644	NMC1093640	Mill Site
HNVFE NO 6	NMC1093645	NMC1093640	Mill Site
HNVFE NO 7	NMC1093646	NMC1093640	Mill Site
HNVFE NO 8	NMC1093647	NMC1093640	Mill Site
HNVFE NO 9	NMC1093648	NMC1093640	Mill Site
HNVFE NO 10	NMC1093649	NMC1093640	Mill Site
HNVFE NO 11	NMC1093650	NMC1093640	Mill Site
HNVFE NO 12	NMC1093651	NMC1093640	Mill Site
HNVFE NO 13	NMC1093652	NMC1093640	Mill Site
HNVFE NO 14	NMC1093653	NMC1093640	Mill Site
HNVFE NO 15	NMC1093654	NMC1093640	Mill Site
HNVFE NO 16	NMC1093655	NMC1093640	Mill Site
HNVFE NO 17	NMC1093656	NMC1093640	Mill Site
HNVFE NO 18	NMC1093657	NMC1093640	Mill Site
HNVFE NO 26	NMC1093665	NMC1093640	Mill Site

HNVFE NO 27	NMC1093666	NMC1093640	Mill Site
HNVFE NO 28	NMC1093667	NMC1093640	Mill Site
HNVFE NO 29	NMC1093668	NMC1093640	Mill Site
HNVFE NO 30	NMC1093669	NMC1093640	Mill Site
HNVFE NO 31	NMC1093670	NMC1093640	Mill Site
HNVFE NO 32	NMC1093671	NMC1093640	Mill Site
HNVFE NO 33	NMC1093672	NMC1093640	Mill Site
HNVFE NO 34	NMC1093673	NMC1093640	Mill Site
HNVFE NO 35	NMC1093674	NMC1093640	Mill Site
HNVFE NO 36	NMC1093675	NMC1093640	Mill Site
HNVFE NO 37	NMC1093676	NMC1093640	Mill Site
HNVFE NO 38	NMC1093677	NMC1093640	Mill Site
HNVFE NO 39	NMC1093678	NMC1093640	Mill Site
HNVFE NO 40	NMC1093679	NMC1093640	Mill Site
HNVFE NO 41	NMC1093680	NMC1093640	Mill Site
HNVFE NO 42	NMC1093681	NMC1093640	Mill Site
HNVFE NO 43	NMC1093682	NMC1093640	Mill Site
HNVFE NO 44	NMC1093683	NMC1093640	Mill Site
HNVFE NO 45	NMC1093684	NMC1093640	Mill Site
HNVFE NO 46	NMC1093685	NMC1093640	Mill Site
HNVFE NO 47	NMC1093686	NMC1093640	Mill Site
HNVFE NO 48	NMC1093687	NMC1093640	Mill Site

ASX: ANNOUNCEMENTS RELEASED DURING THE QUARTER

Successful Road Trip Fires Up Interest in Iron Projects
Company Secretary Appointment/Resignation
Acceleration of Buena Vista Project Production
Drilling And Surface Sampling Confirms High Grades
Quarterly Activities/Appendix 5B Cash Flow Report
Quarterly Activities/Appendix 5B Cash Flow Report
Buena Vista Iron Project Progressing on Multiple Fronts
Positive Scoping Study Validates Buena Vista Iron Project
Magnum Retains Top US Attorney
Stockpiles At Buena Vista Evaluated For Mill Feed
Proposed issue of securities - MGU
Proposed issue of securities - MGU
Application for quotation of securities - MGU
Buena Vista Technical Feasibility Refresh Completed
Midmetal Pursues MOU with Magnum
Application for quotation of securities - MGU
Anglo Pursues Buena Vista DRI Concentrates
Half Yearly Report and Accounts
Magnum Successfully Raises \$2.65M to Advance Buena Vista
Proposed issue of securities – MGU
Application for quotation of securities – MGU
Section 708A(5) Notice

APPENDIX 5B

In accordance with ASX Listing Rule 5.3.2, the Company advises that no mining development or production activities were conducted during the June 2023 Quarter.

As set out in the attached Appendix 5B, exploration expenditure during the quarter totalled \$92,140. Payments to related parties totalling A\$274,856, consisted of remuneration paid to executive and non-executive directors and an associate of a director under respective service agreements.

This document has been authorised for release to the ASX by the Company's Board of Directors.

Further information please contact:

Luke Martino Company Secretary

Magnum Mining and Exploration Limited Luke Martino +61 8 6489 0600

email: info@mmel.com.au