

ASX Release 23 January, 2023

Magnum Mining and Exploration Limited ABN 70 003 170 376

ASX Code MGU

Chief Executive OfficerNeil Goodman

Non-Executive Chairman Anoosh Manzoori

Non-Executive DirectorsAthan Lekkas
Matt Latimore

Company Secretary
John Dinan

Issued Shares 694.878.469

Listed Options

Unlisted Securities (Options & Performance Rights)
214.429.085

Convertible Notes (Options & Performance Rights)
291

Email

info@mmel.com.au

Website

www.mmel.com.au

Level 8 90 Collins Street Melbourne, 3000

T+61 8 62800245

Quarterly Activities Report for the three Month Period ending 31 December 2022

HIGHLIGHTS

Buena Vista

- Site survey completed, obtaining representative samples of ore for beneficiation testing, and collecting stream sediment assays
- 3D modelling of aero-magnetic data completed

Pig Iron and Biochar

 Analysis of biochar production technologies ongoing

Corporate

- CEO and Director visited the US to view potential sites for the pig iron plant and meet with potential strategic investors and off take partners
- Application for listing on the US share exchange OTC-QB approved
- Independent Expert Report on purchase of Appalachian Iron project completed

Magnum Mining & Exploration Limited (ASX: MGU) (Magnum or the Company) is pleased to provide a summary of its activities on the Buena Vista Magnetite Project in Nevada, USA.

BUENA VISTA MAGNETITE PROJECT

The Company's flagship asset is the Buna Vista Magnetite Project in Nevada, USA (Figure 1). The project has a JORC (2012) compliant Resource that the Board of Magnum is actively progressing to mine and downstream processing development using novel technology. The Company is focusing on becoming a supplier of choice of green pig iron to the North American electric arc furnace market.

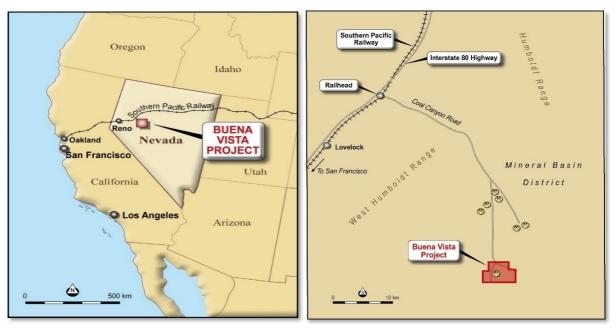


Figure 1: The Buena Vista Magnetite Project is located in central western Nevada close to infrastructure and in a mining friendly jurisdiction

Buena Vista Sampling

Consultant geologists performed surveys of the Buena Vista site in November and collected representative samples of iron ore that were sent to Australia for laboratory testing. The results of these tests are expected to be published in Q1 2023.

In addition, stream sediment assays were performed and samples sent to US laboratories for analysis. The results of these tests will be published in Q1 2023.

3D Modelling of Aero-Magnetic Data

The aero-magnetic data collected via low level helicopter in Q3 2022 was modelled to produce 3D data projections of potential exploration targets. The result of this modelling will be announced in Q1 2023.

PIG IRON AND BIOCHAR

Review Of Biochar Technologies

Magnum is performing a techno-economic analysis of biochar production technologies. These technologies are proven and are in operation in Asia and Australia and will offer the potential for Magnum to start the production and sale of sustainable, "net-zero carbon" biochar. This biochar will be developed to replace PCI type coals for use in the production of pig iron and steel.

CORPORATE

Director and CEO US Visit

Athan Lekkas (Non-Executive Director) and Neil Goodman (CEO) visited 7 states in the US in November to meet with potential strategic and financial investors for the Buena Vista and pig iron projects. Follow on meetings are planned for January/February 2023.

OTC-QB Listing

Magnum completed its application to join the OTC-QB market exchange, allowing its shares to become more easily accessible by North American investors. The largest trading house in North America for non-US shares is OTC Markets Group, which provides a variety of over-the-counter marketplaces. The group's mid-tier product is the OTCQB market for worldwide businesses. Magnum shares will be traded in US dollars and traded during regular North American market hours.

Listing on the OTC-QB will start in January 2023

Appalachian Iron Project

An Independent Expert Report has been completed on the proposed purchase of the Appalachian Iron project by Magnum. The report was prepared by BDO in Perth, and the results will be announced at the EGM of shareholders in January 2023.

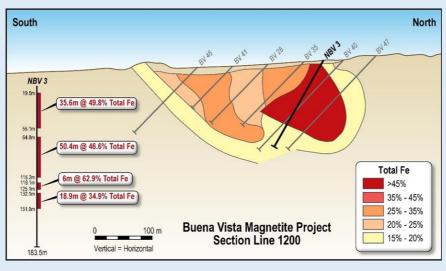
ABOUT THE BUENA VISTA MAGNETITE IRON ORE PROJECT

Location and History

Buena Vista is located approximately 160km east-north-east of Reno in the mining friendly state of Nevada, United States. The Buena Vista Project was discovered in the late 1890's and in the late 1950's to early 1960's around 900,000 tonnes of direct shipping magnetite ore with an estimated grade of 58% Fe was mined. In the 1960's, US Steel Corporation acquired the Buena Vista Project and carried out an extensive exploration program including 230 diamond drill holes and considerable metallurgical test work.

Richmond Mining Limited, an ASX listed company, acquired Buena Vista in 2009 and commenced a detailed exploration program culminating in a definitive feasibility study in 2011 and an updated study in 2013 for an expanded production rate. This included the negotiation of in-principle agreements with existing rail and port operators and the securing of all major mining permits. Detailed costings were completed on the trucking or slurry pipeline options to deliver the concentrate to the rail head located some 50 kilometres from mine site. A significant decline in iron ore prices to an eventual low of less than US\$50/ tonne caused the then proposed development of Buena Vista to be deferred.

Geology


The Buena Vista Project magnetite deposits are the product of late-stage alteration of a localised intrusive local gabbro that resulted in intensely scapolitised lithologies and the deposition of magnetite. The most well-known example of this type of magnetite mineralisation is the Kiruna magnetite deposit in Sweden, which has been in production since the early 1900's. The distribution and nature of the magnetite mineralisation at Buena Vista is a function of ground preparation by faulting and fracturing, forming a series of open fractures, breccia zones and networks of fine fractures. These ground conditions produce variations in mineralization types from massive pods grading +60% magnetite to lighter disseminations grading 10-20% magnetite. Metasomatic magnetite deposits such as those at Buena Vista have important positive beneficiation characteristics over the other main type of magnetite deposit which is a banded iron hosted magnetite, also known as a taconite.

Historic Drilling

The Buena Vista Project has been extensively drilled. The initial cored diamond drilling program was by US Steel Corporation in the early 1960s. A total of around 13,600m was drilled. Over 5,000 samples across the magnetite mineralised zones were assayed by Davis Tube Recovery (DTR).

In 2010, a confirmatory diamond drill program of around 930m was carried out by Richmond Mining Ltd. This program was designed to twin various 1960s holes to test for continuity as well as provide QA/QC confirmation on the historic drilling.

In 2012, Nevada Iron Ltd carried out a program of 3,420m of diamond and 13,024m of RC drilling, designed to provide infill drilling for an expanded resource estimate, extend the boundaries of the known mineralised areas and provide additional core for metallurgical test work.

JORC(2012) Mineral Resource Estimate

On 23 March 2021, Magnum announced the Buena Vista JORC(2012) Mineral Resource Estimate (MRE):

MRE @ 10% Fe cutoff				
Deposit	Resource Category	Mt	Fe%	DTR%
	Indicated	34	17.4	21
Section 5	Inferred	8	16	18
	Total	42	17	29
	Indicated	117	19.5	23.9
West	Inferred	40	17	21
	Total	157	19	23
	Indicated	0	0	0
East	Inferred	33	19	23
	Total	33	19	23
	Indicated	151	19	23.2
TOTAL	Inferred	81	18	22.2
	Total	232	18.6	22.6

The Company confirms that it is not aware of any new information or data that materially affects the information included in this Quarterly Report and that all material assumptions and technical parameters underpinning the estimates in the announcement of the 'Maiden JORC Resources for the Buena Vista Magnetite Project' dated 23 March 2021 continue to apply and have not materially changed.

Metallurgy

Unlike banded iron hosted magnetite deposits (taconites) where the magnetite mineralisation is finely disseminated in siliceous bedding planes, the Buena Vista ore is of magmatic origin and as a consequence is coarser grained in association with the siliceous host rock.

The prime benefit of this is that metallurgical test work has shown that the primary crush of the Buena Vista ore on average increases the mill grade to +45% irrespective of the primary ore grade. This is an important distinction to taconites and results in reduced energy usage for the subsequent crushing and grinding upgrade to the concentrate grade of +67.5%.

The Buena Vista concentrate contains no deleterious concentrations of impurities with silica typically 1.4-1.5%, alumina less than 1% and negligible sulphur and phosphorous content (around-0.003% respectively). Titanium and vanadium levels are low at circa 0.2% TiO_2 and 0.3% V.

Project Logistics

The Buena Vista Project mine site is ideally located, with towns Fallon (20,000 population) and Lovelock (8,000 population) within close proximity to the mine site. This provides site personnel and their families the opportunity to reside in local communities with existing infrastructure and facilities.

The mine site is around 50kms from the Union Pacific rail line which connects with multiple export port options including Stockton, West Sacramento, Oakland, San Francisco and Richmond.

Grid power is available within 40km of the deposits and sufficient water can be sourced from ground water aquifers located in the North Carson sink.

The Nevada Department of Conservation and Natural Resources has already granted the required water rights for the life of the mine.

The mine is located in Churchill County in the State of Nevada which has a strong history of supporting mining developments and is easily accessed via the sealed Coal Canyon road.

GREEN IRON – A PIONEER IN THE INDUSTRY

Magnum is targeting the growing demand for the premium "green iron" market.

By the value adding processing of superior quality Buena Vista magnetite iron ore into carbon neutral pig iron products on site, the project will be ideally positioned to capture high returns for the Company's shareholders.

Pig iron is a major raw material for Electric Arc Furnace steel making process and with new EAF plants already under construction and planned, global pig iron trade is expected to rise rapidly. For the transition into a carbon neutral economy and to meet emission restrictions, all major economies are competing for EAF raw materials. There are 30 million tonnes of new EAF production capacities planned in the USA alone with over 7 million tons of existing EAF producers surrounding Magnum's project. The Buena Vista Green pig iron project will become the FIRST and ONLY green pig iron producer on the West Coast USA.

Key development milestones already achieved

- Buena Vista Project mine schedule and initial pit design completed.
- Purchase of strategic landholding at Colado for railway logistics hub proximal to the Buena Vista Project
- Review of dry magnetic beneficiation plant design & product iron ore quality completed.
- Successful green pig iron pilot plant test production completed.
- Pig Iron production process identified.

Mining and dry beneficiation plant layout

A provisional operation layout for Buena Vista has now been completed by SRK Consulting and covers the initial two years of production at the mine. The provisional plant layout has been carried out by Samuel Engineering.

Iron ore product quality

Extensive historical metallurgical test work has shown that Buena Vista ore beneficiates very easily to a +60% Fe low impurity concentrate (ASX: 29 Oct 2021)). A 'dry concentrate' process can be used to produce the magnetite concentrate feed for the proposed integrated processing facility, so significantly reducing the capital and operating costs.

Biochar supply

Magnum has signed a Memorandum of Understanding (MOU) with Biochar Now, a company which owns and operates biochar research and production facilities in Colorado USA. (ASX: 11 Jan 2022). Biochar Now, is the ONLY biochar producer certified by both the International Organisation for Standardisation (ISO), and the USA Environmental Protection Authority (EPA). Its products also are approved by the United States Department of Agriculture (USDA) and the Canadian Environmental Protection Act (CEPA).

MINING TENEMENTS HELD AT THE END OF THE QUARTER

The following mining tenements were held by Magnum at the end of the Quarter. All are held as mineral claims in the State of Nevada, USA (note: BLM refers to Bureau of Land Management, USA).

Claim Name	BLM Serial Nos.	BLM Lead Serial No.	Claim Type
KMD 1	NMC956471	NMC956471	Lode
KMD 2	NMC956472	NMC956471	Lode
KMD 3	NMC956473	NMC956471	Lode
KMD 4	NMC956474	NMC956471	Lode
KMD 5	NMC956475	NMC956471	Lode
KMD 6	NMC956476	NMC956471	Lode
KMD 7	NMC956477	NMC956471	Lode
KMD 8	NMC956478	NMC956471	Lode
KMD 9	NMC956479	NMC956471	Lode
KMD 10	NMC1049632	NMC1049632	Lode
KMD 11	NMC956481	NMC956471	Lode
KMO 12	NMC956482	NMC956471	Lode
KMO 13	МИС956483	NMC956471	Lode
KMD 14	NMC956484	NMC956471	Lode
KMD 15	NMC956485	NMC956471	Lode
KMD 16	NMC956486	NMC956471	Lode
KM0 17	NMC956487	NMC956471	Lode
KMD 18	NMC956488	NMC956471	Lode
KMD 19	NMC956489	NMC956471	Lode
KMD 20	NMC956490	NMC956471	Lode
KMD 21	NMC956491	NMC956471	Lode
KMD 22	NMC956492	NMC956471	Lode
KMD 23	NMC956493	NMC956471	Lode
KMD 24	NMC956494	NMC956471	Lode
KMD 25	NMC956495	NMC956471	Lode
KMD 26	NMC956496	NMC956471	Lode
KMD 27	NMC956497	NMC956471	Lode
KMD 28	NMC956498	NMC956471	Lode
KMD 29	NMC956499	NMC956471	Lode
KMD 30	NMC956500	NMC956471	Lode
KMD 31	NMC956501	NMC956471	Lode
KMD 32	NMC956502	NMC956471	Lode
KMD 33 KMD 34	NMC956503 NMC956504	NMC956471 NMC95Б471	Lode Lode
KMD 35	NMC956505	NMC956471	Lode
KMD 36	NMC956506	NMC956471	Lode
KMD 37	NMC956507	NMC956471	Lode
KMD 38	NMC956508	NMC956471	Lode
KMD 39	NMC956509	NMC956471	Lode
KMD 40	NMC956510	NMC956471	Lode
KMD 41	NMC956511	NMC956471	Lode
KMD 42	NMC956512	NMC956471	Lode
KMD 43	NMC956513	NMC956471	Lode
KMD 44	NMC956514	NMC956471	Lode
KMD 45	NMC956515	NMC956471	Lode
KMD 46	NMC95Б51Б	NMC956471	Lode
= .0			

KMD 47	NMC956517	NMC956471	Lode
KMD 48	NMC956518	NMC956471	Lode
KMD 49	NMC956519	NMC956471	Lode
KMD 50	NMC956520	NMC956471	Lode
KMD 51	NMC956521	NMC956471	Lode
KMD 52	NMC956522	NMC956471	Lode
KMD 53	NMC956523	NMC956471	Lode
KMD 54	NMC956524	NMC956471	Lode
KMD 55	NMC956525	NMC956471	Lode
KMD 56	NMC956526	NMC956471	Lode
KMD 57	NMC1049633	NMC1049632	Lode
KMD 58	NMC1049634	NMC1049632	Lode
KMD 59	NMC979428	NMC979387	Lode
KMD 60	NMC979429	NMC979387	Lode
KMD 61	NMC979430	NMC979387	Lode
KMD 62	NMC979431	NMC979387	Lode
KMD 63	NMC979432	NMC979387	Lode
KMD 64	NMC979433	NMC979387	Lode
KMD 65	NMC979434	NMC979387	Lode
KMD 66	NMC979435	NMC979387	Lode
KMD 67	NMC979436	NMC979387	Lode
KMD 68	NMC979437	NMC979387	Lode
KMD 69	NMC979438	NMC979387	Lode
KMD 70	NMC979439	NMC979387	Lode
NvFe 1	NMC1045283	NMC1045283	Lode
NvFe 2	NMC1045284	NMC1045283	Lode
NvFe 3	NMC1045285	NMC1045283	Lode
NvFe 4	NMC1045286	NMC1045283	Lode
NvFe 5	NMC1045287	NMC1045283	Lode
NvFe 6	NMC1045288	NMC1045283	Lode
NvFe 7	NMC1045289	NMC1045283	Lode
NvFe 8	NMC1045290	NMC1045283	Lode
NvFe 9	NMC1068429	NMC1068429	Lode
NvFe 10	NMC1068430	NMC1068429	Lode
NvFe 11	NMC1068431	NMC1068429	Lode
NvFe 12	NMC1068432	NMC1068429	Lode
NvFe 13	NMC1068433	NMC1068429	Lode
NvFe 14	NMC1068434	NMC1068429	Lode
NvFe 15	NMC1068435	NMC1068429	Lode
NvFe 16	NMC1068436	NMC1068429	Lode
NvFe 17	NMC1068437	NMC1068429	Lode
NvFe 18	NMC1068438	NMC1068429	Lode
NvFe 19	NMC1068439	NMC1068429	Lode
NvFe 20	NMC1075996	NMC1075996	Lode
NvFe 21	NMC1075997	NMC1075996	Lode
NvFe 22	NMC1075998	NMC1075996	Lode
NvFe 23	NMC1075999	NMC1075996	Lode
NvFe 24	NMC1076000	NMC1075996	Lode
NvFe 25	NMC1076001	NMC1075996	Lode
NvFe 26	NMC1076002	NMC1075996	Lode
NvFe 27	NMC1076003	NMC1075996	Lode
NvFe 28	NMC1076004	NMC1075996	Lode

١	√vFe 29	NMC1076005	NMC1075996	Lode
١	√vFe 30	NMC1076006	NMC1075996	Lode
١	√vFe 31	NMC1076007	NMC1075996	Lode
١	√vFe 32	NMC1076008	NMC1075996	Lode
١	√vFe 33	NMC1076009	NMC1075996	Lode
١	√vFe 34	NMC1076010	NMC1075996	Lode
١	√vFe 35	NMC1076011	NMC1075996	Lode
١	√vFe 36	NMC1076012	NMC1075996	Lode
١	√vFe 37	NMC1076013	NMC1075996	Lode
١	√vFe 38	NMC1076014	NMC1075996	Lode
١	√vFe 39	NMC1076015	NMC1075996	Lode
١	√vFe 40	NMC1076016	NMC1075996	Lode
١	√vFe 41	NMC1076017	NMC1075996	Lode
١	√vFe 42	NMC1076018	NMC1075996	Lode
١	√vFe 43	NMC1076019	NMC1075996	Lode
١	√vFe 44	NMC1076020	NMC1075996	Lode
١	√vFe 45	NMC1076021	NMC1075996	Lode
١	√vFe 46	NMC1076022	NMC1075996	Lode
١	√vFe 47	NMC1076023	NMC1075996	Lode
١	√vFe 48	NMC1076024	NMC1075996	Lode
١	√vFe 49	NMC1076025	NMC1075996	Lode
١	√vFe 50	NMC1076026	NMC1075996	Lode
١	√vFe 51	NMC1076027	NMC1075996	Lode
١	√vFe 52	NMC1076028	NMC1075996	Lode
١	√vFe 53	NMC1076029	NMC1075996	Lode
١	√vFe 54	NMC1076030	NMC1075996	Lode
١	NvFe 55	NMC1076031	NMC1075996	Lode
١	√vFe 56	NMC1076032	NMC1075996	Lode
١	lvFe 57	NMC1076033	NMC1075996	Lode
١	√vFe 58	NMC1076034	NMC1075996	Lode
١	lvFe 59	NMC1076035	NMC1075996	Lode
١	lvFe 60	NMC1076036	NMC1075996	Lode
١	√vFe 61	NMC1076037	NMC1075996	Lode
١	√vFe 62	NMC1076038	NMC1075996	Lode
١	lvFe 63	NMC1076039	NMC1075996	Lode
١	√VFe 64	NMC1076040	NMC1075996	Lode
١	√vFe 65	NMC1076041	NMC1075996	Lode
١	√vFe 66	NMC1076042	NMC1075996	Lode
١	lvFe 67	NMC1076043	NMC1075996	Lode
١	√vFe 68	NMC1076044	NMC1075996	Lode
١	√vFe 69	NMC1076045	NMC1075996	Lode
١	√vFe 70	NMC1076046	NMC1075996	Lode
١	√vFe 71	NMC1076047	NMC1075996	Lode
١	√vFe 72	NMC1076048	NMC1075996	Lode
١	√vFe 73	NMC1076049	NMC1075996	Lode
١	NvFe 74	NMC1076050	NMC1075996	Lode
١	√vFe 75	NMC1076051	NMC1075996	Lode
١	NvFe 76	NMC1076052	NMC1075996	Lode
١	√vFe 77	NMC1076053	NMC1075996	Lode
١	√vFe 78	NMC1076054	NMC1075996	Lode
١	√vFe 79	NMC1076055	NMC1075996	Lode
١	√vFe 80	NMC1076056	NMC1075996	Lode

NvFe 81	NMC1076057	NMC1075996	Lode
NvFe 82	NMC1076058	NMC1075996	Lode
NvFe 83	NMC1076059	NMC1075996	Lode
NvFe 84	NMC1076060	NMC1075996	Lode
NvFe 85	NMC1076061	NMC1075996	Lode
NvFe 86	NMC1076062	NMC1075996	Lode
NvFe 87	NMC1076063	NMC1075996	Lode
NvFe 88	NMC1076064	NMC1075996	Lode
NvFe 89	NMC1076065	NMC1075996	Lode
NvFe 90	NMC1076066	NMC1075996	Lode
NvFe 91	NMC1076067	NMC1075996	Lode
NvFe 92	NMC1076068	NMC1075996	Lode
NvFe 93	NMC1076069	NMC1075996	Lode
NvFe 94	NMC1076070	NMC1075996	Lode
NvFe 95	NMC1076071	NMC1075996	Lode
NvFe 96	NMC1076072	NMC1075996	Lode
NvFe 97	NMC1076073	NMC1075996	Lode
NvFe 98	NMC1076074	NMC1075996	Lode
NvFe 99	NMC1076075	NMC1075996	Lode
NvFe 100	NMC1076076	NMC1075996	Lode
NvFe 101	NMC1076077	NMC1075996	Lode
NvFe 102	NMC1076078	NMC1075996	Lode
NvFe 103	NMC1076079	NMC1075996	Lode
NvFe 104	NMC1076080	NMC1075996	Lode
NvFe 105	NMC1076081	NMC1075996	Lode
NvFe 106	NMC1076082	NMC1075996	Lode
NvFe 108	NMC1076083	NMC1075996	Lode
NvFe 109	NMC1076084	NMC1075996	Lode
NvFe 110	NMC1076085	NMC1075996	Lode
NvFe 111	NMC1076086	NMC1075996	Lode
NvFe 112	NMC1076087	NMC1075996	Lode
NvFe 113	NMC1076088	NMC1075996	Lode
NvFe 114	NMC1076089	NMC1075996	Lode
NvFe 115	NMC1076090	NMC1075996	Lode
HNVFE NO 1	NMC1093640	NMC1093640	Mill Site
HNVFE NO 2	NMC1093641	NMC1093640	Mill Site
HNVFE NO 3	NMC1093642	NMC1093640	Mill Site
HNVFE NO 4	NMC1093643	NMC1093640	Mill Site
HNVFE NO 5	NMC1093644	NMC1093640	Mill Site
HNVFE NO 6	NMC1093645	NMC1093640	Mill Site
HNVFE NO 7	NMC1093646	NMC1093640	Mill Site
HNVFE NO 8	NMC1093647	NMC1093640	Mill Site
HNVFE NO 9	NMC1093648	NMC1093640	Mill Site
HNVFE NO 10	NMC1093649	NMC1093640	Mill Site
HNVFE NO 11	NMC1093650	NMC1093640	Mill Site
HNVFE NO 12	NMC1093651	NMC1093640	Mill Site
HNVFE NO 13	NMC1093652	NMC1093640	Mill Site
HNVFE NO 14	NMC1093653	NMC1093640	Mill Site
HNVFE NO 15	NMC1093654	NMC1093640	Mill Site
HNVFE NO 16	NMC1093655	NMC1093640	Mill Site
HNVFE NO 17	NMC1093656	NMC1093640	Mill Site
HNVFE NO 18	NMC1093657	NMC1093640	Mill Site

HNVFE NO 26	NMC1093665	NMC1093640	Mill Site
HNVFE NO 27	NMC1093666	NMC1093640	Mill Site
HNVFE NO 28	NMC1093667	NMC1093640	Mill Site
HNVFE NO 29	NMC1093668	NMC1093640	Mill Site
HNVFE NO 30	NMC1093669	NMC1093640	Mill Site
HNVFE NO 31	NMC1093670	NMC1093640	Mill Site
HNVFE NO 32	NMC1093671	NMC1093640	Mill Site
HNVFE NO 33	NMC1093672	NMC1093640	Mill Site
HNVFE NO 34	NMC1093673	NMC1093640	Mill Site
HNVFE NO 35	NMC1093674	NMC1093640	Mill Site
HNVFE NO 36	NMC1093675	NMC1093640	Mill Site
HNVFE NO 37	NMC1093676	NMC1093640	Mill Site
HNVFE NO 38	NMC1093677	NMC1093640	Mill Site
HNVFE NO 39	NMC1093678	NMC1093640	Mill Site
HNVFE NO 40	NMC1093679	NMC1093640	Mill Site
HNVFE NO 41	NMC1093680	NMC1093640	Mill Site
HNVFE NO 42	NMC1093681	NMC1093640	Mill Site
HNVFE NO 43	NMC1093682	NMC1093640	Mill Site
HNVFE NO 44	NMC1093683	NMC1093640	Mill Site
HNVFE NO 45	NMC1093684	NMC1093640	Mill Site
HNVFE NO 46	NMC1093685	NMC1093640	Mill Site
HNVFE NO 47	NMC1093686	NMC1093640	Mill Site
HNVFE NO 48	NMC1093687	NMC1093640	Mill Site

ASX: ANNOUNCEMENTS RELEASED DURING THE QUARTER

- 05-Oct-22 Aeromagnetic survey to maximize potential of Buena Vista
- 10-Oct-22 Trading Halt
- 12-Oct-22 Magnum to acquire Appalachian Iron Inc
- 12-Oct-22 Appendix 3B
- 14-Oct-22 Applachian presentation West Virginia project
- 17-Oct-22 MGU Webinar announcement
- 17-Oct-22 Appendix 5B
- 18-Oct-22 MGU Option lapse
- 21-Oct-22 MGU general meeting poll results
- 24-Oct-22 Appendix 2A
- 25-Oct-22 Quarterly activities report
- 26-Oct-22 Appendix 2A
- 31-Oct-22 Cleansing notice
- 31-Oct-22 Appendix 2A
- 31-Oct-22 Appendix 5B updated
- 31-Oct-22 Clarification and retraction

01-Nov-22 Appendix 3G

01-Nov-22 Appendix 3G

02-Nov-22 Appendix 3G

02-Nov-22 Appendix 2A

03-Nov-22 Appendix 2A

03-Nov-22 Cleansing notice

07-Nov-22 Aeromagnetics highlights multiple targets

07-Nov-22 Appendix 3G

07-Nov-22 Appendix 3G

07-Nov-22 Appendix 3H

07-Nov-22 Appendix 3Y

29-Nov-22 Investor Webinar

01-Dec-22 Appendix 3G

05-Dec-22 Appendix 2A

14-Dec-22 Notice of meeting 16/1/03

14-Dec-22 Proxy forms for meeting

APPENDIX 5B

In accordance with ASX Listing Rule 5.3.2, the Company advises that no mining development or production activities were conducted during the December 2022 Quarter.

As set out in the attached Appendix 5B, exploration expenditure during the quarter totalled \$235,600. Payments to related parties totalling A\$198,950 consisted of remuneration paid to executive and non-executive directors and an associate of a director under respective service agreements.

This document has been authorised for release to the ASX by the Company's Board of Directors.

Further information please contact:

John Dinan Non-Executive Director and Company Secretary

Magnum Mining and Exploration Limited John Dinan +61 2 8316 3989

email: info@mmel.com.au