

ASX Release 25 October, 2022

Magnum Mining and Exploration Limited ABN 70 003 170 376

**ASX Code** MGU

**Non-Executive Chairman** Anoosh Manzoori

**Non-Executive Directors** Athan Lekkas Matt Latimore

Company Secretary
John Dinan

**Issued Shares** 532,990,866

# **Listed Options**

nil

Unlisted Securities (Options & Performance Rights)
114,000,500

Convertible Notes (Options & Performance Rights)
317

#### **Email**

info@mmel.com.au

#### Website

www.mmel.com.au

Level 8 90 Collins Street Melbourne, 3000

T+61 8 62800245

# **Quarterly Activities Report for the three Month Period ending 30 September 2022**

#### **HIGHLIGHTS**

#### **Buena Vista**

- Conceptual Study completed, identifying HIsmelt as the optimum technology for the production of green pig iron at the Buena Vista mine
- Critical review of recent and historic metallurgical test work completed
- Drill hole data base audit and validation in progress to inform estimation of a district-wide target estimation
- Geophysical modelling continues to map out full potential of Magnum's Buena Vista claims
- Area-wide high resolution aeromagnetic survey undertaken

# **Corporate**

- New CEO appointed to drive the next phase of the company
- Company received firm commitments from institutional and sophisticated investors, subject to shareholder approval, for a placement to raise gross proceeds of \$5 million (before costs).

Magnum Mining & Exploration Limited (ASX: MGU) (Magnum or the Company) is pleased to provide a summary of its activities on the Buena Vista Magnetite Project in Nevada, USA.



#### **BUENA VISTA MAGNETITE PROJECT**

The Company's flagship asset is the Buna Vista Magnetite Project in Nevada, USA (Figure 1). The project has a JORC (2012) compliant Resource that the Board of Magnum is actively progressing to mine and downstream processing development using novel technology. The Company is focusing on becoming a supplier of choice of green pig iron to the North American electric arc furnace market.



Figure 1: The Buena Vista Magnetite Project is located in central western Nevada close to infrastructure and in a mining friendly jurisdiction

#### **Green Pig Iron Production**

MinRizon Projects completed a conceptual study to determine the optimum technology for the production of green pig iron at the Buena Vista mine. The study provided techno-economic assessments of three proven technologies that can produce pig iron with biochar: mini blast furnaces, rotary hearth furnaces with electric melters, and HIsmelt. The MinRizon study conclusively showed that the technology with the highest NPV and IRR at Buena Vista is HIsmelt (announcement to the ASX 29 August, 2022).

The HIsmelt technology will be capable of producing between 800,000 to 1,500,000 tonnes per year of green "net-zero carbon" pig iron produced from Buena Vista iron ore concentrate, steel plant wastes and locally sourced biochar.

#### **Review of metallurgy**

Recent and historic metallurgical testing underwent a heuristic review. The review collated and assessed all test work done to date to inform the optimisation of the ore processing flow sheet. This work will feed into future metallurgical test work to finalise the beneficiation flowsheet. The data from this test work the green pig iron conceptual study to assist in assessing the economically superior play off between processing cost and complexity with pig iron cost and productivity.

#### Drill hole database audit and verification

The Company has continued an audit and verification of the drill hole database at Buena Vista. This activity is one component (see next section) of an assessment of the resources potential encapsulated



by Magnum's minerals claims in the project. An early output from this activity was the publication of an Exploration Target of 19 to 32 million tonnes at 15 to 25% Fe at the Company's Iron Point prospect (announced to the ASX on 13 September, 2022). It is expected that, once all historic data is captured, further Exploration Targets will be generated.

#### Resource potential to be assessed

Magnetic data, reflecting magnetite distribution and potentially grade, is undergoing 3D voxel modelling as a prelude to a district-wide estimation of potential magnetite resources held in the Company's claims. Any such estimate will be subject to testing by drilling and the potential quantity and grade of the estimate will be conceptual in nature, as there has been insufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource.

With the currently available magnetic data being restricted to the existing ground magnetic survey, a contractor was hired to fly the area with a new high resolution, helicopter borne magnetic survey (announced to the ASX 5 October, 2022). The survey results are being analysed and the results are expected by the end of 2022.

#### **CORPORATE**

#### **CEO Appointment**

On 5 August 2022, the Company announced the appointment of Mr Neil Goodman as Chief Executive Officer. Neil was previously engaged as a strategic advisor and has considerable iron ore processing, pig iron steel making and plant construction expertise. Neil was involved in the design, construction and operation the first two HIsmelt plants in Australia and China and has more than 10 years' experience in the design and construction of ironmaking plants in the USA.

#### **Capital Raise**

Company received firm commitments from institutional and sophisticated investors, subject to shareholder approval, for a placement of up to 142,857,142 fully paid ordinary shares in the Company at an issue price of A\$0.035 per Share to raise gross proceeds of \$5 million (before costs). As part of the Placement, the Company also offered investors one (1) free attaching option to acquire a Share (exercisable at \$0.05 and expiring on the date which is three (3) years from the date of issue) for every two (2) Shares subscribed for and issued.



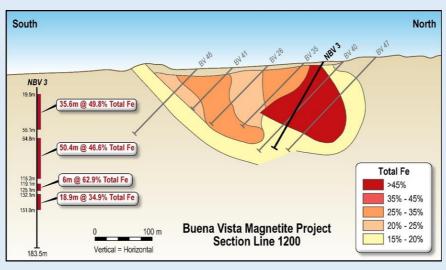
#### ABOUT THE BUENA VISTA MAGNETITE IRON ORE PROJECT

#### **Location and History**

Buena Vista is located approximately 160km east-north-east of Reno in the mining friendly state of Nevada, United States. The Buena Vista Project was discovered in the late 1890's and in the late 1950's to early 1960's around 900,000 tonnes of direct shipping magnetite ore with an estimated grade of 58% Fe was mined. In the 1960's, US Steel Corporation acquired the Buena Vista Project and carried out an extensive exploration program including 230 diamond drill holes and considerable metallurgical test work.

Richmond Mining Limited, an ASX listed company, acquired Buena Vista in 2009 and commenced a detailed exploration program culminating in a definitive feasibility study in 2011 and an updated study in 2013 for an expanded production rate. This included the negotiation of in-principle agreements with existing rail and port operators and the securing of all major mining permits. Detailed costings were completed on the trucking or slurry pipeline options to deliver the concentrate to the rail head located some 50 kilometres from mine site. A significant decline in iron ore prices to an eventual low of less than US\$50/ tonne caused the then proposed development of Buena Vista to be deferred.

#### Geology


The Buena Vista Project magnetite deposits are the product of late-stage alteration of a localised intrusive local gabbro that resulted in intensely scapolitised lithologies and the deposition of magnetite. The most well-known example of this type of magnetite mineralisation is the Kiruna magnetite deposit in Sweden, which has been in production since the early 1900's. The distribution and nature of the magnetite mineralisation at Buena Vista is a function of ground preparation by faulting and fracturing, forming a series of open fractures, breccia zones and networks of fine fractures. These ground conditions produce variations in mineralization types from massive pods grading +60% magnetite to lighter disseminations grading 10-20% magnetite. Metasomatic magnetite deposits such as those at Buena Vista have important positive beneficiation characteristics over the other main type of magnetite deposit which is a banded iron hosted magnetite, also known as a taconite.

#### **Historic Drilling**

The Buena Vista Project has been extensively drilled. The initial cored diamond drilling program was by US Steel Corporation in the early 1960s. A total of around 13,600m was drilled. Over 5,000 samples across the magnetite mineralised zones were assayed by Davis Tube Recovery (DTR).

In 2010, a confirmatory diamond drill program of around 930m was carried out by Richmond Mining Ltd. This program was designed to twin various 1960s holes to test for continuity as well as provide QA/QC confirmation on the historic drilling.

In 2012, Nevada Iron Ltd carried out a program of 3,420m of diamond and 13,024m of RC drilling, designed to provide infill drilling for an expanded resource estimate, extend the boundaries of the known mineralised areas and provide additional core for metallurgical test work.





#### **JORC(2012) Mineral Resource Estimate**

On 23 March 2021, Magnum announced the Buena Vista JORC(2012) Mineral Resource Estimate (MRE):

| MRE @ 10% Fe cutoff       |           |        |      |      |  |
|---------------------------|-----------|--------|------|------|--|
| Deposit Resource Category |           | Mt Fe% |      | DTR% |  |
|                           | Indicated | 34     | 17.4 | 21   |  |
| Section 5                 | Inferred  | 8      | 16   | 18   |  |
|                           | Total     | 42     | 17   | 29   |  |
|                           | Indicated | 117    | 19.5 | 23.9 |  |
| West                      | Inferred  | 40     | 17   | 21   |  |
|                           | Total     | 157    | 19   | 23   |  |
|                           | Indicated | 0      | 0    | 0    |  |
| East                      | Inferred  | 33     | 19   | 23   |  |
|                           | Total     | 33     | 19   | 23   |  |
|                           | Indicated | 151    | 19   | 23.2 |  |
| TOTAL                     | Inferred  | 81     | 18   | 22.2 |  |
|                           | Total     | 232    | 18.6 | 22.6 |  |

The Company confirms that it is not aware of any new information or data that materially affects the information included in this Quarterly Report and that all material assumptions and technical parameters underpinning the estimates in the announcement of the 'Maiden JORC Resources for the Buena Vista Magnetite Project' dated 23 March 2021 continue to apply and have not materially changed.

#### Metallurgy

Unlike banded iron hosted magnetite deposits (taconites) where the magnetite mineralisation is finely disseminated in siliceous bedding planes, the Buena Vista ore is of magmatic origin and as a consequence is coarser grained in association with the siliceous host rock.

The prime benefit of this is that metallurgical test work has shown that the primary crush of the Buena Vista ore on average increases the mill grade to +45% irrespective of the primary ore grade. This is an important distinction to taconites and results in reduced energy usage for the subsequent crushing and grinding upgrade to the concentrate grade of +67.5%.

The Buena Vista concentrate contains no deleterious concentrations of impurities with silica typically 1.4-1.5%, alumina less than 1% and negligible sulphur and phosphorous content (around-0.003% respectively). Titanium and vanadium levels are low at circa 0.2%  $TiO_2$  and 0.3% V.

#### **Project Logistics**

The Buena Vista Project mine site is ideally located, with towns Fallon (20,000 population) and Lovelock (8,000 population) within close proximity to the mine site. This provides site personnel and their families the opportunity to reside in local communities with existing infrastructure and facilities.

The mine site is around 50kms from the Union Pacific rail line which connects with multiple export port options including Stockton, West Sacramento, Oakland, San Francisco and Richmond

Grid power is available within 40km of the deposits and sufficient water can be sourced from ground water aquifers located in the North Carson sink.

The Nevada Department of Conservation and Natural Resources has already granted the required water rights for the life of the mine.

The mine is located in Churchill County in the State of Nevada which has a strong history of supporting mining developments and is easily accessed via the sealed Coal Canyon road.



#### **GREEN IRON – A PIONEER IN THE INDUSTRY**

Magnum is targeting the growing demand for the premium "green iron" market.

By the value adding processing of superior quality Buena Vista magnetite iron ore into carbon neutral pig iron products on site, the project will be ideally positioned to capture high returns for the Company's shareholders.

Pig iron is a major raw material for Electric Arc Furnace steel making process and with new EAF plants already under construction and planned, global pig iron trade is expected to rise rapidly. For the transition into a carbon neutral economy and to meet emission restrictions, all major economies are competing for EAF raw materials. There are 30 million tonnes of new EAF production capacities planned in the USA alone with over 7 million tons of existing EAF producers surrounding Magnum's project. The Buena Vista Green pig iron project will become the FIRST and ONLY green pig iron producer on the West Coast USA.

#### Key development milestones already achieved

- Buena Vista Project mine schedule and initial pit design completed.
- Purchase of strategic landholding at Colado for railway logistics hub proximal to the Buena Vista Project
- Review of dry magnetic beneficiation plant design & product iron ore quality completed.
- Successful green pig iron pilot plant test production completed.
- Pig Iron production process identified.

### Mining and dry beneficiation plant layout

A provisional operation layout for Buena Vista has now been completed by SRK Consulting and covers the initial two years of production at the mine. The provisional plant layout has been carried out by Samuel Engineering.

#### Iron ore product quality

Extensive historical metallurgical test work has shown that Buena Vista ore beneficiates very easily to a +60% Fe low impurity concentrate (ASX: 29 Oct 2021)). A 'dry concentrate' process can be used to produce the magnetite concentrate feed for the proposed integrated processing facility, so significantly reducing the capital and operating costs.

#### **Biochar supply**

Magnum has signed a Memorandum of Understanding (MOU) with Biochar Now, a company which owns and operates biochar research and production facilities in Colorado USA. (ASX: 11 Jan 2022). Biochar Now, is the ONLY biochar producer certified by both the International Organisation for Standardisation (ISO), and the USA Environmental Protection Authority (EPA). Its products also are approved by the United States Department of Agriculture (USDA) and the Canadian Environmental Protection Act (CEPA).





# MINING TENEMENTS HELD AT THE END OF THE QUARTER

The following mining tenements were held by Magnum at the end of the Quarter. All are held as mineral claims in the State of Nevada, USA (note: BLM refers to Bureau of Land Management, USA).

| Claim Name | BLM Serial Nos. | BLM Lead Serial No. | Claim Type |
|------------|-----------------|---------------------|------------|
| KMD 1      | NMC956471       | NMC956471           | Lode       |
| KMD 2      | NMC956472       | NMC956471           | Lode       |
| KMD 3      | NMC956473       | NMC956471           | Lode       |
| KMD 4      | NMC956474       | NMC956471           | Lode       |
| KMD 5      | NMC956475       | NMC956471           | Lode       |
| KMD 6      | NMC956476       | NMC956471           | Lode       |
| KMD 7      | NMC956477       | NMC956471           | Lode       |
| KMD 8      | NMC956478       | NMC956471           | Lode       |
| KMD 9      | NMC956479       | NMC956471           | Lode       |
| KMD 10     | NMC1049632      | NMC1049632          | Lode       |
| KMD 11     | NMC956481       | NMC956471           | Lode       |
| KMO 12     | NMC956482       | NMC956471           | Lode       |
| KMO 13     | МИС956483       | NMC956471           | Lode       |
| KMD 14     | NMC956484       | NMC956471           | Lode       |
| KMD 15     | NMC956485       | NMC956471           | Lode       |
| KMD 16     | NMC956486       | NMC956471           | Lode       |
| KM0 17     | NMC956487       | NMC956471           | Lode       |
| KMD 18     | NMC956488       | NMC956471           | Lode       |
| KMD 19     | NMC956489       | NMC956471           | Lode       |
| KMD 20     | NMC956490       | NMC956471           | Lode       |
| KMD 21     | NMC956491       | NMC956471           | Lode       |
| KMD 22     | NMC956492       | NMC956471           | Lode       |
| KMD 23     | NMC956493       | NMC956471           | Lode       |
| KMD 24     | NMC956494       | NMC956471           | Lode       |
| KMD 25     | NMC956495       | NMC956471           | Lode       |
| KMD 26     | NMC956496       | NMC956471           | Lode       |
| KMD 27     | NMC956497       | NMC956471           | Lode       |
| KMD 28     | NMC956498       | NMC956471           | Lode       |
| KMD 29     | NMC956499       | NMC956471           | Lode       |
| KMD 30     | NMC956500       | NMC956471           | Lode       |
| KMD 31     | NMC956501       | NMC956471           | Lode       |
| KMD 32     | NMC956502       | NMC956471           | Lode       |
| KMD 33     | NMC956503       | NMC956471           | Lode       |
| KMD 34     | NMC956504       | NMC95Б471           | Lode       |
| KMD 35     | NMC95Б505       | NMC956471           | Lode       |
| KMD 36     | NMC956506       | NMC956471           | Lode       |
| KMD 37     | NMC956507       | NMC956471           | Lode       |
| KMD 38     | NMC956508       | NMC956471           | Lode       |
| KMD 39     | NMC956509       | NMC956471           | Lode       |
| KMD 40     | NMC956510       | NMC956471           | Lode       |
| KMD 41     | NMC956511       | NMC956471           | Lode       |
| KMD 42     | NMC956512       | NMC956471           | Lode       |
| KMD 43     | NMC956513       | NMC956471           | Lode       |
| KMD 44     | NMC956514       | NMC956471           | Lode       |
| KMD 45     | NMC956515       | NMC956471           | Lode       |
| KMD 46     | NMC95Б51Б       | NMC956471           | Lode       |



| KMD 47  | NMC956517  | NMC956471  | Lode |
|---------|------------|------------|------|
| KMD 48  | NMC956518  | NMC956471  | Lode |
| KMD 49  | NMC956519  | NMC956471  | Lode |
| KMD 50  | NMC956520  | NMC956471  | Lode |
| KMD 51  | NMC956521  | NMC956471  | Lode |
| KMD 52  | NMC956522  | NMC956471  | Lode |
| KMD 53  | NMC956523  | NMC956471  | Lode |
| KMD 54  | NMC956524  | NMC956471  | Lode |
| KMD 55  | NMC956525  | NMC956471  | Lode |
| KMD 56  | NMC956526  | NMC956471  | Lode |
| KMD 57  | NMC1049633 | NMC1049632 | Lode |
| KMD 58  | NMC1049634 | NMC1049632 | Lode |
| KMD 59  | NMC979428  | NMC979387  | Lode |
| KMD 60  | NMC979429  | NMC979387  | Lode |
| KMD 61  | NMC979430  | NMC979387  | Lode |
| KMD 62  | NMC979431  | NMC979387  | Lode |
| KMD 63  | NMC979432  | NMC979387  | Lode |
| KMD 64  | NMC979433  | NMC979387  | Lode |
| KMD 65  | NMC979434  | NMC979387  | Lode |
| KMD 66  | NMC979435  | NMC979387  | Lode |
| KMD 67  | NMC979436  | NMC979387  | Lode |
| KMD 68  | NMC979437  | NMC979387  | Lode |
| KMD 69  | NMC979438  | NMC979387  | Lode |
| KMD 70  | NMC979439  | NMC979387  | Lode |
| NvFe 1  | NMC1045283 | NMC1045283 | Lode |
| NvFe 2  | NMC1045284 | NMC1045283 | Lode |
| NvFe 3  | NMC1045285 | NMC1045283 | Lode |
| NvFe 4  | NMC1045286 | NMC1045283 | Lode |
| NvFe 5  | NMC1045287 | NMC1045283 | Lode |
| NvFe 6  | NMC1045288 | NMC1045283 | Lode |
| NvFe 7  | NMC1045289 | NMC1045283 | Lode |
| NvFe 8  | NMC1045290 | NMC1045283 | Lode |
| NvFe 9  | NMC1068429 | NMC1068429 | Lode |
| NvFe 10 | NMC1068430 | NMC1068429 | Lode |
| NvFe 11 | NMC1068431 | NMC1068429 | Lode |
| NvFe 12 | NMC1068432 | NMC1068429 | Lode |
| NvFe 13 | NMC1068433 | NMC1068429 | Lode |
| NvFe 14 | NMC1068434 | NMC1068429 | Lode |
| NvFe 15 | NMC1068435 | NMC1068429 | Lode |
| NvFe 16 | NMC1068436 | NMC1068429 | Lode |
|         |            | NMC1068429 |      |
| NvFe 17 | NMC1068437 |            | Lode |
| NvFe 18 | NMC1068438 | NMC1068429 | Lode |
| NvFe 19 | NMC1068439 | NMC1068429 | Lode |
| NvFe 20 | NMC1075996 | NMC1075996 | Lode |
| NvFe 21 | NMC1075997 | NMC1075996 | Lode |
| NvFe 22 | NMC1075998 | NMC1075996 | Lode |
| NvFe 23 | NMC1075999 | NMC1075996 | Lode |
| NvFe 24 | NMC1076000 | NMC1075996 | Lode |
| NvFe 25 | NMC1076001 | NMC1075996 | Lode |
| NvFe 26 | NMC1076002 | NMC1075996 | Lode |
| NvFe 27 | NMC1076003 | NMC1075996 | Lode |
| NvFe 28 | NMC1076004 | NMC1075996 | Lode |
|         |            |            |      |



| NvFe 29 | NMC1076005 | NMC1075996 | Lode         |
|---------|------------|------------|--------------|
| NvFe 30 | NMC1076006 | NMC1075996 | Lode         |
| NvFe 31 | NMC1076007 | NMC1075996 | Lode         |
| NvFe 32 | NMC1076008 | NMC1075996 | Lode         |
| NvFe 33 | NMC1076009 | NMC1075996 | Lode         |
| NvFe 34 | NMC1076010 | NMC1075996 | Lode         |
| NvFe 35 | NMC1076011 | NMC1075996 | Lode         |
| NvFe 36 | NMC1076012 | NMC1075996 | Lode         |
| NvFe 37 | NMC1076013 | NMC1075996 | Lode         |
| NvFe 38 | NMC1076014 | NMC1075996 | Lode         |
| NvFe 39 | NMC1076015 | NMC1075996 | Lode         |
| NvFe 40 | NMC1076016 | NMC1075996 | Lode         |
| NvFe 41 | NMC1076017 | NMC1075996 | Lode         |
| NvFe 42 | NMC1076018 | NMC1075996 | Lode         |
| NvFe 43 | NMC1076019 | NMC1075996 | Lode         |
| NvFe 44 | NMC1076020 | NMC1075996 | Lode         |
| NvFe 45 | NMC1076021 | NMC1075996 | Lode         |
| NvFe 46 | NMC1076022 | NMC1075996 | Lode         |
| NvFe 47 | NMC1076023 | NMC1075996 | Lode         |
| NvFe 48 | NMC1076024 | NMC1075996 | Lode         |
| NvFe 49 | NMC1076025 | NMC1075996 | Lode         |
| NvFe 50 | NMC1076026 | NMC1075996 | Lode         |
| NvFe 51 | NMC1076027 | NMC1075996 | Lode         |
| NvFe 52 | NMC1076028 | NMC1075996 | Lode         |
| NvFe 53 | NMC1076029 | NMC1075996 | Lode         |
| NvFe 54 | NMC1076030 | NMC1075996 | Lode         |
| NvFe 55 | NMC1076031 | NMC1075996 | Lode         |
| NvFe 56 | NMC1076032 | NMC1075996 | Lode         |
| NvFe 57 | NMC1076033 | NMC1075996 | Lode         |
| NvFe 58 | NMC1076034 | NMC1075996 | Lode         |
| NvFe 59 | NMC1076035 | NMC1075996 | Lode         |
| NvFe 60 | NMC1076036 | NMC1075996 | Lode         |
| NvFe 61 | NMC1076037 | NMC1075996 | Lode         |
| NvFe 62 | NMC1076038 | NMC1075996 | Lode         |
| NvFe 63 | NMC1076039 | NMC1075996 | Lode         |
| NvFe 64 | NMC1076040 | NMC1075996 | Lode         |
| NvFe 65 | NMC1076041 | NMC1075996 | Lode         |
| NvFe 66 | NMC1076042 | NMC1075996 | Lode         |
| NvFe 67 | NMC1076043 | NMC1075996 | Lode         |
| NvFe 68 | NMC1076044 | NMC1075996 | Lode         |
| NvFe 69 | NMC1076045 | NMC1075996 | Lode         |
| NvFe 70 | NMC1076046 | NMC1075996 | Lode         |
| NvFe 71 | NMC1076047 | NMC1075996 | Lode         |
| NvFe 72 | NMC1076048 | NMC1075996 | Lode         |
| NvFe 73 | NMC1076049 | NMC1075996 | Lode         |
| NvFe 74 | NMC1076050 | NMC1075996 | Lode         |
| NvFe 75 | NMC1076051 | NMC1075996 | Lode         |
| NvFe 76 | NMC1076052 | NMC1075996 | Lode         |
| NvFe 77 | NMC1076053 | NMC1075996 | Lode         |
| NvFe 78 | NMC1076054 | NMC1075996 | Lode         |
| NvFe 79 | NMC1076055 | NMC1075996 | Lode         |
| NvFe 80 | NMC1076056 | NMC1075996 | Lode         |
|         |            |            | <del>-</del> |



| NvFe 81     | NMC1076057 | NMC1075996 | Lode      |
|-------------|------------|------------|-----------|
| NvFe 82     | NMC1076058 | NMC1075996 | Lode      |
| NvFe 83     | NMC1076059 | NMC1075996 | Lode      |
| NvFe 84     | NMC1076060 | NMC1075996 | Lode      |
| NvFe 85     | NMC1076061 | NMC1075996 | Lode      |
| NvFe 86     | NMC1076062 | NMC1075996 | Lode      |
| NvFe 87     | NMC1076063 | NMC1075996 | Lode      |
| NvFe 88     | NMC1076064 | NMC1075996 | Lode      |
| NvFe 89     | NMC1076065 | NMC1075996 | Lode      |
| NvFe 90     | NMC1076066 | NMC1075996 | Lode      |
| NvFe 91     | NMC1076067 | NMC1075996 | Lode      |
| NvFe 92     | NMC1076068 | NMC1075996 | Lode      |
| NvFe 93     | NMC1076069 | NMC1075996 | Lode      |
| NvFe 94     | NMC1076070 | NMC1075996 | Lode      |
| NvFe 95     | NMC1076071 | NMC1075996 | Lode      |
| NvFe 96     | NMC1076072 | NMC1075996 | Lode      |
| NvFe 97     | NMC1076073 | NMC1075996 | Lode      |
| NvFe 98     | NMC1076074 | NMC1075996 | Lode      |
| NvFe 99     | NMC1076075 | NMC1075996 | Lode      |
| NvFe 100    | NMC1076076 | NMC1075996 | Lode      |
| NvFe 101    | NMC1076077 | NMC1075996 | Lode      |
| NvFe 102    | NMC1076078 | NMC1075996 | Lode      |
| NvFe 103    | NMC1076079 | NMC1075996 | Lode      |
| NvFe 104    | NMC1076080 | NMC1075996 | Lode      |
| NvFe 105    | NMC1076081 | NMC1075996 | Lode      |
| NvFe 106    | NMC1076082 | NMC1075996 | Lode      |
| NvFe 108    | NMC1076083 | NMC1075996 | Lode      |
| NvFe 109    | NMC1076084 | NMC1075996 | Lode      |
| NvFe 110    | NMC1076085 | NMC1075996 | Lode      |
| NvFe 111    | NMC1076086 | NMC1075996 | Lode      |
| NvFe 112    | NMC1076087 | NMC1075996 | Lode      |
| NvFe 113    | NMC1076088 | NMC1075996 | Lode      |
| NvFe 114    | NMC1076089 | NMC1075996 | Lode      |
| NvFe 115    | NMC1076090 | NMC1075996 | Lode      |
| HNVFE NO 1  | NMC1093640 | NMC1093640 | Mill Site |
| HNVFE NO 2  | NMC1093641 | NMC1093640 | Mill Site |
| HNVFE NO 3  | NMC1093642 | NMC1093640 | Mill Site |
| HNVFE NO 4  | NMC1093643 | NMC1093640 | Mill Site |
| HNVFE NO 5  | NMC1093644 | NMC1093640 | Mill Site |
| HNVFE NO 6  | NMC1093645 | NMC1093640 | Mill Site |
| HNVFE NO 7  | NMC1093646 | NMC1093640 | Mill Site |
| HNVFE NO 8  | NMC1093647 | NMC1093640 | Mill Site |
| HNVFE NO 9  | NMC1093648 | NMC1093640 | Mill Site |
| HNVFE NO 10 | NMC1093649 | NMC1093640 | Mill Site |
| HNVFE NO 11 | NMC1093650 | NMC1093640 | Mill Site |
| HNVFE NO 12 | NMC1093651 | NMC1093640 | Mill Site |
| HNVFE NO 13 | NMC1093652 | NMC1093640 | Mill Site |
| HNVFE NO 14 | NMC1093653 | NMC1093640 | Mill Site |
| HNVFE NO 15 | NMC1093654 | NMC1093640 | Mill Site |
| HNVFE NO 16 | NMC1093655 | NMC1093640 | Mill Site |
| HNVFE NO 17 | NMC1093656 | NMC1093640 | Mill Site |
| HNVFE NO 18 | NMC1093657 | NMC1093640 | Mill Site |
|             |            |            |           |



| HNVFE NO 26 | NMC1093665 | NMC1093640 | Mill Site |
|-------------|------------|------------|-----------|
| HNVFE NO 27 | NMC1093666 | NMC1093640 | Mill Site |
| HNVFE NO 28 | NMC1093667 | NMC1093640 | Mill Site |
| HNVFE NO 29 | NMC1093668 | NMC1093640 | Mill Site |
| HNVFE NO 30 | NMC1093669 | NMC1093640 | Mill Site |
| HNVFE NO 31 | NMC1093670 | NMC1093640 | Mill Site |
| HNVFE NO 32 | NMC1093671 | NMC1093640 | Mill Site |
| HNVFE NO 33 | NMC1093672 | NMC1093640 | Mill Site |
| HNVFE NO 34 | NMC1093673 | NMC1093640 | Mill Site |
| HNVFE NO 35 | NMC1093674 | NMC1093640 | Mill Site |
| HNVFE NO 36 | NMC1093675 | NMC1093640 | Mill Site |
| HNVFE NO 37 | NMC1093676 | NMC1093640 | Mill Site |
| HNVFE NO 38 | NMC1093677 | NMC1093640 | Mill Site |
| HNVFE NO 39 | NMC1093678 | NMC1093640 | Mill Site |
| HNVFE NO 40 | NMC1093679 | NMC1093640 | Mill Site |
| HNVFE NO 41 | NMC1093680 | NMC1093640 | Mill Site |
| HNVFE NO 42 | NMC1093681 | NMC1093640 | Mill Site |
| HNVFE NO 43 | NMC1093682 | NMC1093640 | Mill Site |
| HNVFE NO 44 | NMC1093683 | NMC1093640 | Mill Site |
| HNVFE NO 45 | NMC1093684 | NMC1093640 | Mill Site |
| HNVFE NO 46 | NMC1093685 | NMC1093640 | Mill Site |
| HNVFE NO 47 | NMC1093686 | NMC1093640 | Mill Site |
| HNVFE NO 48 | NMC1093687 | NMC1093640 | Mill Site |

# ASX: ANNOUNCEMENTS RELEASED DURING THE QUARTER

| 16/09/2022 | Notice of Meeting                                    |
|------------|------------------------------------------------------|
| 14/09/2022 | Half year accounts                                   |
| 13/09/2022 | Exploration target defined, field work begins        |
| 29/08/2022 | Proposed issue of securities MGU                     |
| 29/08/2022 | Magnum Mining presentation                           |
| 29/08/2022 | MGU \$5 million cap raise completed                  |
| 25/08/2022 | Trading halt                                         |
| 05/08/2022 | Appointment of CEO                                   |
| 01/08/2022 | Application for quotation of securities              |
| 29/07/2022 | Agreement for guarantee of origin for green pig iron |
| 28/07/2022 | Appendix 5B                                          |
| 28/7/2022  | Quarterly activities report                          |
| 27/07/2022 | ESG Certification for net zero green pig iron        |
| 25/07/2022 | Application for quotation of securities              |
| 15/07/2022 | Application for quotation of securities              |
| 08/07/2022 | Application for quotation of securities              |
| 01/07/2022 | Application for quotation of securities              |



#### **APPENDIX 5B**

In accordance with ASX Listing Rule 5.3.2, the Company advises that no mining development or production activities were conducted during the September 2022 Quarter.

As set out in the attached Appendix 5B, exploration expenditure during the quarter totalled \$310,640. Payments to related parties totalling A\$164,000 consisted of remuneration paid to executive and non-executive directors and an associate of a director under respective service agreements.

This document has been authorised for release to the ASX by the Company's Board of Directors.

Further information please contact:

John Dinan
Non-Executive Director and Company Secretary

Magnum Mining and Exploration Limited John Dinan +61 2 8316 3989